[PDF]    http://dx.doi.org/10.3952/physics.v54i3.2951

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 127–135 (2014)


SLOW AND FAST OPTICAL DEGRADATION OF THE SESAM FOR FIBER LASER MODE-LOCKING AT 1 µm
K. Viskontasa,b, K. Regelskisa,b, and N. Rusteikaa,b
aCenter for Physical Sciences and Technology, Savanorių 231, LT- 02300, Vilnius, Lithuania
bEkspla Ltd, Savanorių 231, LT- 02300, Vilnius, Lithuania
E-mail: karolis.viskontas@ar.fi.lt

Received 17 April 2014; accepted 29 May 2014

In this paper, we introduce a detailed study of degradation of the InxGa1-xAs quantum well (QW) based semiconductor saturable absorber mirror (SESAM) irradiated with picosecond pulses from a fiber laser at a 1064 nm wavelength. In a slow degradation study at a lower incident fluence, the longest operating times of ~4000 h were recorded for two SESAMs with a slow carrier relaxation (τ = 15 ps) in comparison to 1000 h of the fast (τ = 1 ps) SESAM. The nonlinear reflectivity measurements after the long-term tests indicated that the most likely mechanism of SESAM degradation was the modification of the InGaAs QW structure. By reducing a thermal load on the SESAM, an expected lifetime was increased ten-fold. At higher saturation levels, SESAMs experienced critical optical damage (COD) after less than 24 h of operation. The most likely mechanism of COD was deduced to be the two-photon absorption in GaAs material. The necessity of slow degradation tests close to the operating conditions of the SESAM was demonstrated.
Keywords: saturable absorber, SESAM, mode-locked fiber laser, optical degradation, Yb-doped fiber, ultra-short pulse
PACS: 42.81.Wg, 42.65.Re, 42.70.Ng

SKAIDULINIŲ LAZERIŲ MODŲ SINCHRONIZACIJAI SKIRTŲ SESAM DARINIŲ LĖTA IR SPARTI DEGRADACIJA ESANT 1 µm BANGOS ILGIUI
K. Viskontasa,b, K. Regelskisa,b, N. Rusteikaa,b
aFizinių ir technologijos mokslų centras, Vilnius, Lietuva
bUAB „Ekspla“, Vilnius, Lietuva

Darbe pristatytas InxGa1-xAs kvantinių duobių pagrindu pagamintų puslaidininkinių įsisotinančios sugerties veidrodžių (SESAM), apšviestų pikosekundiniais skaidulinio 1064 nm osciliatoriaus impulsais, degradacijos tyrimas. Ilgalaikių degradacijų tyrime, kuris atliktas su mažesniais impulsų energijos tankiais, du ilgiausiai veikę lėtos relaksacijos (τ = 15 ps) SESAM pasiekė ~4000 h, o greitos relaksacijos (τ = 1 ps) SESAM tik 1000 h. Netiesinio atspindžio matavimai rodo, kad InGaAs kvantinių duobių optinė modifikacija yra pagrindinė SESAM degradacijos priežastis. Be to, sumažinus terminį poveikį, SESAM tikėtina gyvavimo trukmė padidėjo dešimt kartų. Prie didesnių energijos tankių stebimas staigus SESAM pažeidimas, po įjungimo praėjus mažiau nei 24 valandoms. Toks pažeidimas siejamas su dvifotone sugertimi GaAs sluoksnyje. Dėl skirtingų SESAM degradacijos mechanizmų pademonstruota būtinybė atlikti ilgalaikius testus realaus skaidulinio lazerio veikimo sąlygomis.

References / Nuorodos

[1] A.H. Zewail, Femtochemistry: atomic-scale dynamics of chemical bond, J. Phys. Chem. A 104, 5660–5694 (2000),
http://dx.doi.org/10.1021/jp001460h
[2] A. Stolow, A. E. Bragg, and D.M. Neumark, Femtosecond time-resolved photoelectron spectroscopy, Chem Rev. 104(4), 1719–1758 (2004),
http://dx.doi.org/10.1021/cr020683w
[3] J. Adamonis, N. Rusteika, R. Danilevičius, and A. Krotkus, A compact terahertz burst emission system driven with 1 μm fiber laser, Opt. Commun. 293, 61–64 (2013),
http://dx.doi.org/10.1016/j.optcom.2012.11.100
[4] M.E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers: Technology and Applications (Marcel Dekker, New York, 2003),
http://www.crcnetbase.com/isbn/9780203910207
[5] H. Endert, A. Galvanauskas, G. Sucha, R. Patel, and M. Stockin, Novel ultrashort pulse fiber lasers for micromachining applications, RIKEN Rev. 43, 23–27 (2002),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.222.9515
[6] G. Račiukaitis, S. Grubinskas, P. Gečys, and M. Gedvilas, Selectiveness of laser processing due to energy coupling localization: case of thin film solar cell scribing, Appl. Phys. A 112(1), 93–98 (2012),
http://dx.doi.org/10.1007/s00339-012-7206-x
[7] O. Okhotnikov, A. Grudinin, and M. Pessa, Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications, New J. Phys. 6(177), 1–22 (2004),
http://dx.doi.org/10.1088/1367-2630/6/1/177
[8] A.M. Heidt, J.P. Burger, J.-N. Maran, and N. Traynor, High power and high energy ultrashort pulse generation with a frequency shifted feedback fiber laser, Opt. Express 15(24), 15892–15897 (2007),
http://dx.doi.org/10.1364/OE.15.015892
[9] G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, Generation: pushing the limits in linear and non-linear optics, Science 286(5444), 1507–1512 (1999),
http://dx.doi.org/10.1126/science.286.5444.1507
[10] R.J. Collins and P. Kisliuk, Control of population inversion in pulsed optical masers by feedback modulation, J. Appl. Phys. 33, 378–388 (1962),
http://dx.doi.org/10.1063/1.1728883
[11] F. W. Wise, A. Chong, and W. H. Renninger, High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion, Laser Photon. 2(1–2), 58–73 (2008),
http://dx.doi.org/10.1002/lpor.200710041
[12] A. Chong, J. Buckley, W. Renninger, and F. Wise, All-normal-dispersion femtosecond fiber laser, Opt. Express 14(21), 10095–10100 (2006),
http://dx.doi.org/10.1364/OE.14.010095
[13] A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, On wave-breaking free fiber lasers mode-locked with two saturable absorber mechanisms, Opt. Express 16(11), 8181–8189 (2008),
http://dx.doi.org/10.1364/OE.16.008181
[14] U. Keller, K.J. Weingarten, F.X. Kartner, D. Kopf, B. Braun, I.D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers, IEEE J. Sel. Top. Quantum Electron 2, 435 (1996),
http://dx.doi.org/10.1109/2944.571743
[15] S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D.P. Brown, A.G. Nasibulin, E.I. Kauppinen, A. Härkönen, and O.G. Okhotnikov, Carbon nanotube films for ultrafast broadband technology, Opt. Express 17(4), 2358–2363 (2009),
http://dx.doi.org/10.1364/OE.17.002358
[16] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, and A.C. Ferrari, Graphene mode-locked ultrafast laser, ACS Nano 4(2), 803–810 (2010),
http://dx.doi.org/10.1021/nn901703e
[17] F.G. Celii, L.A. Files-Sesler, E.A. Beam and H.-Y. Liu, In situ detection of InGaAs strained-layer relaxation by laser light scattering, J. Vac. Sci. Technol. A 11, 1796 (1993),
http://dx.doi.org/10.1116/1.578428
[18] C.J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O.H. Heckl, C.R.E. Baer, M. Golling, T. Udmeyer, and U. Keller, SESAMs for high-power oscillators: Design guidelines and damage thresholds, IEEE J. Select. Topics Quantum Electron. 18, 29–41 (2012),
http://dx.doi.org/10.1109/JSTQE.2010.2092753
[19] R. Herda and O. G. Okhotnikov,  Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,  IEEE J. Quantum Electron.  40(7), 893–899 (2004),
http://dx.doi.org/10.1109/JQE.2004.830194
[20] H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region, IEEE J. Select. Topics Quantum Electron. 1, 2–13 (1995),
http://dx.doi.org/10.1109/2944.468377