[PDF]    http://dx.doi.org/10.3952/physics.v54i3.2956

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 162–169 (2014)


MICROFABRICATION OF 3D METALLIC INTERCONNECTS VIA DIRECT LASER WRITING AND CHEMICAL METALLIZATION
T. Jonavičius, S. Rekštytė, and M. Malinauskas
Laser Research Center, Department of Quantum Electronics, Faculty of Physics, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: mangirdas.malinauskas@ff.vu.lt

Received 2 May 2014; accepted 29 May 2014

We present a developed method based on direct laser writing (DLW) and chemical metallization (CM) for microfabrication of three-dimensional (3D) metallic structures. Such approach enables manufacturing of free-form electro-conductive interconnects which can be used in integrated electric circuits such as micro-opto-electro-mechanical systems (MOEMS). The proposed technique employing ultrafast high repetition rate lasers enables efficient fabrication of 3D microstructures on dielectric as well as conductive substrates. The produced polymer links out of organic-inorganic composite matrix after CM serve as interconnects of separate metallic contacts; their dimensions are: height 15 μm, width 5 μm, length 35–45 μm, and they could provide 300 nΩm resistivity measured in a macroscopic way. This proves the techniques potential for creating integrated 3D electric circuits at microscale.
Keywords: direct laser writing, laser nanolithography, 3D microstructures, electro-conductive polymers, 3D electric circuits, integrated electronics, SZ2080, MOEMS
PACS: 42.62.-b

TRIMAČIŲ METALINIŲ JUNGČIŲ MIKROFORMAVIMAS TIESIOGINIO LAZERINIO RAŠYMO IR CHEMINĖS METALIZACIJOS BŪDU

T. Jonavičius, S. Rekštytė, M. Malinauskas
Vilniaus universiteto Fizikos fakulteto Kvantinės elektronikos katedros Lazerinių tyrimų centras, Vilnius, Lietuva

Darbe tiriama galimybė formuoti trimates metalines mikrojungtis tarp elektrai laidžių paviršių panaudojant tiesioginį lazerinį rašymą fotopolimeruose ir cheminį metalizavimą. Ši technologija leidžia laisvai parinkti darinio geometriją, o cheminis metalizavimas pasižymi selektyvumu ir jam nėra reikalingas išorinis elektrinis laukas.
Naudojant šį metodą eksperimentiškai suformuotos metalinės jungtys, kurios veikia kaip mikrolaidai tarp dviejų elektrai laidžių chromo paviršių. Nustatytos jų pagrindinės fizikinės savybės, palyginamos su kitais metodais pasiekiamais rezultatais (pasiektas atsikartojamumas gana mažas). Be to, reikia imtis papildomų priemonių siekiant visiškai selektyvaus padengimo sidabru.
Vis dėlto naudojant šį metodą galima formuoti trimačius metalinius mikrodarinius, kurie gali būti panaudoti taikant įvairias mikroelektromechanines sistemas, plazmoniką, metamedžiagas bei nanofotoniką.

References / Nuorodos

[1] M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, Ultrafast-laser micro/nano-structuring of photo-polymers: a decade of advances, Phys. Rep. 533(1), 1–31 (2013),
http://dx.doi.org/10.1016/j.physrep.2013.07.005
[2] K.-S. Lee, D.-Y. Yang, S. Park, and R. Kim, Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications, Polymer Adv. Tech. 17(2), 72–82 (2006),
http://dx.doi.org/10.1002/pat.664
[3] S. Maruo and J. Fourkas, Recent progress in multiphoton microfabrication, Laser Photon. Rev. 2(1–2), 100–11 (2008),
http://dx.doi.org/10.1002/lpor.200710039
[4] M. Raimondi, S.M. Eaton, M. Nava, M. Lagana, G. Cerullo, and R. Osellame, Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine, J. Appl. Biomater. Biomech. 10(1), 55–65 (2012),
http://dx.doi.org/10.5301/JABFM.2012.9278
[5] A. Ovsianikov, V. Mironov, J. Stamp, and R. Liska, Engineering 3D cell-culture matrices: multiphoton processing technologies for biological & tissue engineering applications, Expert Rev. Med. Devices 9(6), 613–633 (2012),
http://dx.doi.org/10.1586/erd.12.48
[6] K. Terzaki, N. Vasilantonakis, A. Gaidukeviciute, C. Reinhardt, C. Fotakis, M. Vamvakaki, and M. Farsari, 3D conducting nanostructures fabricated using direct laser writing, Opt. Mat. Express 1(4), 586–597 (2011),
http://dx.doi.org/10.1364/OME.1.000586
[7] G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, Threedimensional nanostructures for photonics, Adv. Funct. Mat. 20(7), 1038–1052 (2010),
http://dx.doi.org/10.1002/adfm.200901838
[8] V. Mizeikis, S. Juodkazis, R. Tarozaite, J. Juodkazyte, K. Juodkazis, and H. Misawa, Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region, Opt. Express 15(13), 8454–8464 (2007),
http://dx.doi.org/10.1364/OE.15.008454
[9] L. Maigyte, V. Purlys, J. Trull, M. Peckus, C. Cojocaru, D. Gailevičius, M. Malinauskas, and K. Staliunas, Flat lensing in visible frequency range by woodpile photonic crystals, Opt. Lett. 38(14), 2376–2378 (2013),
http://dx.doi.org/10.1364/OL.38.002376
[10] X.-F. Lin, Q.-D. Chen, L.-G. Nu, T. Jiang, W.-Q. Wang, and H.-B. Sun, Mask-free production of integratable monolithic micro logarithmic axicon lenses, J. Lightwave Tech. 28(8), 1256–1260 (2010),
http://dx.doi.org/10.1109/JLT.2010.2043413
[11] A. Žukauskas, M. Malinauskas, C. Reinhardt, B. Chichkov, and R. Gadonas, Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization, Appl. Opt. 51(21), 4995–5003 (2012),
http://dx.doi.org/10.1364/AO.51.004995
[12] G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F.D. Angelis, and E.D. Fabrizio, Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization, Microelectron. Eng. 87(5–8), 876–9 (2010),
http://dx.doi.org/10.1016/j.mee.2009.12.046
[13] M. Malinauskas, A. Žukauskas, K. Belazaras, K. Tikuišis, V. Purlys, R. Gadonas, and A. Piskarskas, Laser fabrication of various polymer microoptical components, Eur. Phys. J. Appl. Phys. 58(02), 20501 (2012),
http://dx.doi.org/10.1051/epjap/2012110475
[14] D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices, Lab Chip 9, 2391–2394 (2009),
http://dx.doi.org/10.1039/b902159k
[15] E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique, J. Micromech. Microeng. 22(6), 065022 (2012),
http://dx.doi.org/10.1088/0960-1317/22/6/065022
[16] A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications, Acta Biomater. 7, 967–974 (2011),
http://dx.doi.org/10.1016/j.actbio.2010.10.023
[17] M. Malinauskas, D. Baltriukienė, A. Kraniauskas, P. Danilevičius, R. Jarašienė, R. Širmenis, A. Žukauskas, E. Balčiūnas, V. Purlys, R. Gadonas, V. Bukelskienė, V. Sirvydis, and A. Piskarskas, In vitro and in vivo biocompatibility study on laser 3D microstructurable polymers, Appl. Phys. Mater. Sci. Process. 108(3), 751–759 (2012),
http://dx.doi.org/10.1007/s00339-012-6965-8
[18] F. Claeyssens, E. Hasan, A. Gaidukeviciute, D. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B.N. Chichkov, and M. Farsari, Three-dimensional biodegradable structures fabricated by two-photon polymerization, Langmuir 25(5), 3219–3223 (2009),
http://dx.doi.org/10.1021/la803803m
[19] A. Matei, J. Schouc, S. Canulescu, M. Zamfirescu, C. Albu, B. Mitu, E. Buruiana, T. Buruiana, C. Mustaciosu, I. Petcu, and M. Dinescu, Functionalized ormosil scaffolds processed by direct laser polymerization for application in tissue engineering, Appl. Surf. Sci. 278, 357–361 (2013),
http://dx.doi.org/10.1016/j.apsusc.2012.10.104
[20] C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B.N. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, On the design and fabrication by two-photon polymerization of a readily assembled micro-valve, Int. J. Adv. Manuf. Technol. 48, 435–441 (2010),
http://dx.doi.org/10.1007/s00170-009-2320-4
[21] P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas, R. Jarašienė, R. Širmenis, D. Baltriukienė, V. Bukelskienė, R. Gadonas, and M. Malinauskas, Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering, J. Biomed. Opt. 17(8), 081405 (2012),
http://dx.doi.org/10.1117/1.JBO.17.8.081405
[22] A. Ovsianikov, A. Deiwick, S.V. Vlierberghe, P. Dubruel, L. Moller, G. Drager, and B. Chichkov, Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering, Biomacromolecules 12(4), 851–858, (2011),
http://dx.doi.org/10.1021/bm1015305
[23] P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas, R. Širmenis, D. Baltriukieneė V. Bukelskienė, R. Gadonas, V. Sirvydis, A. Piskarskas, and M. Malinauskas, Laser 3D micro/nanofabrication of polymers for tissue engineering applications, Opt. Laser. Technol. 45, 518–524 (2013),
http://dx.doi.org/10.1016/j.optlastec.2012.05.038
[24] J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency, Appl. Phys. Lett. 90, 131106 (2007),
http://dx.doi.org/10.1063/1.2717532
[25] A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique, Lith. J. Phys. 50(1), 55–61 (2010),
http://dx.doi.org/10.3952/lithjphys.50112
[26] A. Otuka, V. Tribuzi, D. Correa, and C. Mendonca, Emission features of microstructures fabricated by two-photon polymerization containing three organic dyes, Opt. Mat. Express 2(12), 1803–1808 (2012),
http://dx.doi.org/10.1364/OME.2.001803
[27] J. Wang, H. Xia, B.-B. Xu, L.-G. Niu, D. Wu, Q.-D. Chen, and H.-B. Sun, Remote manipulation of micronanomachines containing magnetic nanoparticles, Opt. Lett. 34(5), 581–583 (2009),
http://dx.doi.org/10.1364/OL.34.000581
[28] M. Suter, L. Zhang, E. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. Peyer, B. Nelson, and C. Hierold, Superparamagnetic microrobots: fabrication by two-photon polymerization and biocompatibility, Biomed. Microdevices 15, 997–1003 (2013),
http://dx.doi.org/10.1007/s10544-013-9791-7
[29] D. Correa, P. Tayalia, G. Cosendey, D. Santos, R. Aroca, E. Mazur, and C. Mendonca, Two-photon polymerization for fabricating structures containing the biopolymer chitosan, J. Nanosci. Nanotech. 9, 5845–5849 (2009),
http://dx.doi.org/10.1166/jnn.2009.1292
[30] M. Farsari, G. Filippidis, T. Drakakis, K. Sambani, S. Georgiou, G. Papadakis, E. Gizeli, and C. Fotakis, Three-dimensional biomolecule patterning, Appl. Surf. Sci. 253(19), 8115–8118 (2007),
http://dx.doi.org/10.1016/j.apsusc.2007.02.177
[31] J. Gansel, M. Thiel, M. Rill, M. Decker, K. B. V. Saile, G. von Freymann, S. Linden, and M. Wegener, Gold helix photonic metamaterial as broadband circular polarizer, Science 325(5947), 1513–1515 (2009),
http://dx.doi.org/10.1126/science.1177031
[32] M. Farsari and B. Chichkov, Materials processing: Two-photon fabrication, Nat. Photon. 3, 450–452 (2009),
http://dx.doi.org/10.1038/nphoton.2009.131
[33] W. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. Sule, M. Steer, and P. Franzon, Demystifying 3D ICS: The pros and cons of going vertical, IEEE Des. Test. Comput. 22(6), 498–510 (2005),
http://dx.doi.org/10.1109/MDT.2005.136
[34] K. Tu, Reliability challenges in 3D IC packaging technology, Microelectron. Reliab. 51(3), 517–523 (2011),
http://dx.doi.org/10.1016/j.microrel.2010.09.031
[35] S. Ushiba, S. Shoji, K. Masui, P. Kuray, J. Kono, and S. Kawata, 3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization litography, Carbon 59, 283–288 (2013),
http://dx.doi.org/10.1016/j.carbon.2013.03.020
[36] M. Oubaha, A. Kavanagh, A. Gorin, G. Bickauskaite, R. Byrne, M. Farsari, R. Winfield, D. Diamond, C. McDonagh, and R. Copperwhite, Graphene-doped photo-patternable ionogels: tuning of conductivity and mechanical stability of 3D microstructures, J. Mater. Chem. 22, 10552–10559 (2012),
http://dx.doi.org/10.1039/c2jm30512g
[37] K. Kurselis, R. Kiyan, V. Bagratashvili, V. Popov, and B. Chichkov, 3D fabrication of all-polymer conductive microstructures by two photon polymerization, Opt. Express 21(25), 31029–31035 (2013),
http://dx.doi.org/10.1364/OE.21.031029
[38] S. Maruo and T. Saeki, Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix, Opt. Express 16(2), 1174–1179 (2008),
http://dx.doi.org/10.1364/OE.16.001174
[39] S. Passinger, M. Saifullah, C. Reinhardt, K. Subramanian, B. Chichkov, and M. Welland, Direct 3D patterning of TiO2 using femtosecond laser pulses, Adv. Mater. 19(9), 1218–1221 (2007),
http://dx.doi.org/10.1002/adma.200602264
[40] Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction, Small 5(10), 1144–1148 (2009),
http://dx.doi.org/10.1002/smll.200801179
[41] G. Lewis and E. Schlienger, Practical considerations and capabilities for laser assisted direct metal deposition, Mater. Design 21(4), 417–423 (2000),
http://dx.doi.org/10.1016/S0261-3069(99)00078-3
[42] B.S. Lim, A. Rahtu, and R. Gordon, Atomic layer deposition of transition metals, Nat. Mater. 2, 749–754 (2003),
http://dx.doi.org/10.1038/nmat1000
[43] R. Farrer, C. LaFratta, L. Li, J. Praino, M. Naughton, B. Saleh, M. Teich, and J. Fourkas, Selective functionalization of 3-D polymer microstructures, J. Am. Chem. Soc. 128(6), 1796–1797 (2006),
http://dx.doi.org/10.1021/ja0583620
[44] S. Rekštytė, A. Žukauskas, V. Purlys, Y. Gordienko, and M. Malinauskas, Direct laser writing of 3D polymer micro/nanostructures on metallic surfaces, Appl. Surf. Sci. 270, 8115–8118 (2013),
http://dx.doi.org/10.1016/j.apsusc.2013.01.034
[45] Van Nostrand's Scientific Encyclopedia, eds. G. Considine and P. Kulik, 10th ed. (Wiley, 2008),
http://dx.doi.org/10.1002/9780471743989
[46] C. LaFratta, D. Lim, K. O'Malley, T. Baldacchini, and J. Fourkas, Direct laser patterning of conductive wires on three-dimensional polymeric microstructures, Chem. Mater. 18(8), 2038–2042 (2006),
http://dx.doi.org/10.1021/cm0525306
[47] Y.-S. Chen, A. Tal, and S. Kuebler, Route to threedimensional metallized microstructures using cross-linkable epoxide SU-8, Chem. Mater. 19(16), 3858–3860 (2007),
http://dx.doi.org/10.1021/cm0710812
[48] M. Farsari, M. Vamvakaki, and B. Chichkov, Multiphoton polymerization of hybrid materials, J. Opt. 12, 124001 (2010),
http://dx.doi.org/10.1088/2040-8978/12/12/124001
[49] F. Burmeister, S Steenhusen, R. Houbertz, U. Zeitner, S. Nolte, and A. Tunnermann, Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization, J. Laser Appl. 24, 042014 (2012).
http://dx.doi.org/10.2351/1.4730807
[50] D. Gramotnev and S. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photon. 4(2), 83–91 (2010).
http://dx.doi.org/10.1038/nphoton.2009.282
[51] M. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition, Nat. Mater. 7(7), 543–546 (2008).
http://dx.doi.org/10.1038/nmat2197
[52] M. Hossain and M. Gu, Fabrication methods of 3D periodic metallic nano/microstructures for photonics applications, Laser Photon. Rev. 8(20), 233–249 (2014).
http://dx.doi.org/10.1002/lpor.201300052