Received 13 October 2014; revised 10 November 2014; accepted 10
      December 2014
      
      
2013 m. liepos mėn. Sianghe
        mieste (Hebėjaus provincija, Kinija) vykdytų išskirtinių
        aerozolio dalelių fizikinių-cheminių savybių tyrimų metu buvo
        tirtas retas naktinis dalelių susidarymas ir jį lemiančios
        priežastys. Panaudojus moderniausią spektrometrinę aerozolio
        dalelių matavimo įrangą nustatyta, kad naujų dalelių susidarymas
        vyko esant aukštam kondensaciniam nuotėkiui, CS = 0,055 s–1,
        dalelių susidarymo sparta naktį buvo 1,25 kartus didesnė nei
        dieną, siekė 45 ± 5 cm–3 s–1. Naujų
        dalelių susidarymo metu skaitinė 2–10 nm dydžio dalelių
        koncentracijos reikšmė padidėjo nuo N2–10 nm
        = 2,0 · 104 ± 2000 cm–3 iki N2–10
          nm = 7,3 · 104 ± 7300 cm–3. Naujai
        susidariusios 20–35 nm dydžio dalelės pasižymėjo itin dideliu
        lakumu ir mažu higroskopiškumu. Po dalelių išgarinimo 300 °C
        temperatūroje buvo užregistruota tik smulki liekamoji frakcija
        antrojo diferencialinio dalelių judrio analizatoriaus išėjime.
        Ši frakcija siejama su dalelėse vykstančiu polimerizacijos
        vyksmu, kai ant jos paviršiaus kondensuojasi organiniai
        junginiai. Naujai susiformavusių aerozolio dalelių populiacija,
        patekusi į 87 % santykinės oro drėgmės kamerą, augo vienodai ir
        pasižymėjo GF = 1,15 augimo koeficientu. Atlikus
        vietovės galimų šaltinių analizę nustatyta, kad naktinis naujų
        dalelių susidarymas yra nulemtas aukštos santykinės oro drėgmės
        (>98 %), vėjo krypties ir iš gyvenamųjų teritorijų atnešamų
        lakiosios organikos (amino) ir NH3 junginių.
      References
/
          Nuorodos
        
        [1] I. Tegen, D. Koch,
        A.A. Lacis, and M. Sato, Trends in tropospheric aerosol loads
        and corresponding impact on direct radiative forcing between
        1950 and 1990: A model study, J. Geophys. Res. 
105,
        26971–26989 (2000), 
        
http://dx.doi.org/10.1029/2000JD900280
        [2] X. Tie, D. Wu, and G. Brasseur, Lung cancer mortality and
        exposure to atmospheric aerosol particles in Guangzhou, China,
        Atmos. Environ. 
43(14), 2375–2377 (2009), 
        
http://dx.doi.org/10.1016/j.atmosenv.2009.01.036
        [3] M. Kulmala, H. Vehkamaki, T. Petäjä, M. Dal Maso, A. Lauri,
        V.-M. Kerminen, W. Birmili, and P.H. McMurry, Formation and
        growth rates of ultrafine atmospheric particles: A review of
        observations, J. Aerosol Sci. 
35, 143–176 (2004), 
        
http://dx.doi.org/10.1016/j.jaerosci.2003.10.003
        [4] H. Yu, R. McGraw, and S.H. Lee, Effects of amines on
        formation of sub‐3 nm particles and their subsequent growth,
        Geophys. Res. Lett. 
39(2), L02807 (2012), 
        
http://dx.doi.org/10.1029/2011GL050099
        [5] B. Wehner, A. Wiedensohler, T.M. Tuch, Z.J. Wu, M. Hu, J.
        Slanina, and C.S. Kiang, Variability of the aerosol number size
        distribution in Beijing, China: New particle formation, dust
        storms, and high continental background, Geophys. Res. Lett. 
31,
        L22108 (2004), 
        
http://dx.doi.org/10.1029/2004GL021596
        [6] Z. Wu, M. Hu, S. Liu, B. Wehner, S. Bauer, A. Wiedensohler,
        et al., New particle formation in Beijing, China: Statistical
        analysis of a 1‐year data set, J. Geophys. Res. 
112(D9),
        D09209 (2007), 
        
http://dx.doi.org/10.1029/2006JD007406
        [7] J.R. Pierce, W.R. Leaitch, J. Liggio, et al., Nucleation and
        condensational growth to CCN sizes during a sustained pristine
        biogenic SOA event in a forested mountain valley, Atmos. Chem.
        Phys. 
12, 3147–3163 (2012), 
        
http://dx.doi.org/10.5194/acp-12-3147-2012
        [8] M.J. Dunn, J.-L. Jimenez, D. Baumgardner, T. Castro, P.H.
        McMurry, and J.N. Smith, Measurements of Mexico City
        nanoparticle size distributions: Observations of new particle
        formation and growth, J. Geophys. Lett. 
31, LI10102
        (2004), 
        
http://dx.doi.org/10.1029/2004GL019483
        [9] A. Wiedensohler, H.-C. Hansson, D. Orsini, et al.,
        Night-time formation and occurrence of new particles associated
        with orographic clouds, Atmos. Environ. 
31, 2545–2559
        (1997), 
        
http://dx.doi.org/10.1016/S1352-2310(96)00299-3
        [10] S.-H. Lee, L.-H. Young, D.R. Benson, et al., Observations
        of nighttime new particle formation in the troposphere, J.
        Geophys. Res. 
113, D10210 (2008), 
        
http://dx.doi.org/10.1029/2007JD009351
        [11] T. Suni, M. Kulmala, A. Hirsikko, et al., Formation and
        characteristics of ions and charged aerosol particles in a
        native Australian Eucalypt forest, Atmos. Chem. Phys. 
8,
        129–139 (2008), 
        
http://dx.doi.org/10.5194/acp-8-129-2008
        [12] M. Kulmala and A. Laaksonen, Binary nucleation of
        water–sulfuric acid system: Comparison of classical theories
        with different H
2SO
4 saturation vapor
        pressures, J. Chem. Phys. 
93(1), 696–701 (1990), 
        
http://dx.doi.org/10.1063/1.459519
        [13] P. Korhonen, M. Kulmala, A. Laaksonen, Y. Viisanen, R.
        McGraw, and J.H. Seinfeld, Ternary nucleation of H
2SO
4,
        NH
3, and H
2O in the atmosphere, J.
        Geophys. Res. 
104(D21), 26349–26353 (1999), 
        
http://dx.doi.org/10.1029/1999JD900784
        [14] N. Ma, C.S. Zhao, A. Nowak, et al., Aerosol optical
        properties in the North China Plain during HaChi campaign: an
        in-situ optical closure study, Atmos. Chem. Phys. 
11,
        5959–5973 (2011), 
        
http://dx.doi.org/10.5194/acp-11-5959-2011
        [15] I.K. Ortega, T. Suni, M. Boy, et al., New insights into
        nocturnal nucleation, Atmos. Chem. Phys. 
12, 4297–4312
        (2012), 
        
http://dx.doi.org/10.5194/acp-12-4297-2012
        [16] S.S. Brown, W.P. Dube, J. Peischl, et al., Budgets for
        nocturnal VOC oxidation by nitrate radicals aloft during the
        2006 Texas Air Quality Study, J. Geophys. Res. 
116,
        D24305 (2011), 
        
http://dx.doi.org/10.1029/2011JD016544
        [17] Z.Z. Deng, C.S. Zhao, N. Ma, et al., Size-resolved and bulk
        activation properties of aerosols in the North China Plain,
        Atmos. Chem. Phys. 
11, 3835–3846 (2011), 
        
http://dx.doi.org/10.5194/acp-11-3835-2011
        [18] L. Wang, J. Yang, P. Zhang, et al., A review of air
        pollution and control in Hebei Province, China, Open J. Air
        Pollut. 
2(03), 47 (2013), 
        
http://dx.doi.org/10.4236/ojap.2013.23007
        [19] T.M. Tuch, A. Haudek, T. Muller, A. Nowak, H. Wex, and A.
        Wiedensohler, Design and performance of an automatic
        regenerating adsorption aerosol dryer for continuous operation
        at monitoring sites, Atmos. Meas. Tech. 
2, 417–422
        (2009), 
        
http://dx.doi.org/10.5194/amt-2-417-2009
        [20] A. Wiedensohler, W. Birmili, A. Nowak, et al., Mobility
        particle size spectrometers: harmonization of technical
        standards and data structure to facilitate high quality
        long-term observations of atmospheric particle number size
        distributions, Atmos. Meas. Tech. 
5, 657–685 (2012), 
        
http://dx.doi.org/10.5194/amt-5-657-2012
        [21] S. Mirme and A. Mirme, The mathematical principles and
        design of the NAIS – a spectrometer for the measurement of
        cluster ion and nanometer aerosol size distributions, Atmos.
        Meas. Tech. 
6(4), 1061–1071 (2013), 
        
http://dx.doi.org/10.5194/amt-6-1061-2013
        [22] M. Kulmala, I. Riipinen, M. Sipilä, et al., Toward direct
        measurement of atmospheric nucleation, Science 
318(5847),
        89–92 (2007), 
        
http://dx.doi.org/10.1126/science.1144124
        [23] A. Massling, S. Leinert, A. Wiedensohler, and D. Covert,
        Hygroscopic growth of sub-micrometer and one-micrometer aerosol
        particles measured during ACE-Asia, Atmos. Chem. Phys. 
7(12),
        3249–3259 (2007), 
        
http://dx.doi.org/10.5194/acp-7-3249-2007
        [24] I.N. Tang and H.R. Munkelwitz, Water activities, densities,
        and refractive indices of aqueous sulfates and sodium nitrate
        droplets of atmospheric importance, J. Geophys. Res. 
99(D9),
        18801–18808 (1994), 
        
http://dx.doi.org/10.1029/94JD01345
        [25] S. Philippin, A. Wiedensohler, and F. Stratmann,
        Measurements of non-volatile fractions of pollution aerosols
        with an eight-tube volatility tandem differential mobility
        analyzer (VTDMA-8), J. Aerosol Sci. 
35(2), 185–203
        (2004), 
        
http://dx.doi.org/10.1016/j.jaerosci.2003.07.004
        [26] H. Burtscher, U. Baltensperger, N. Bukowiecki, et al.,
        Separation of volatile and non-volatile aerosol fractions by
        thermodesorption: instrumental development and applications, J.
        Aerosol Sci. 
32(4), 427–442 (2001), 
        
http://dx.doi.org/10.1016/S0021-8502(00)00089-6
        [27] M. Dal Maso, M. Kulmala, I. Riipinen, R. Wagner, T.
        Hussein, P.P. Aalto, and K.E. Lehtinen, Formation and growth of
        fresh atmospheric aerosols: eight years of aerosol size
        distribution data from SMEAR II, Hyytiala, Finland, Boreal
        Environ. Res. 
10(5), 323 (2005), 
        
http://www.borenv.net/BER/pdfs/ber10/ber10-323.pdf
        [28] Y.F. Cheng, M. Berghof, R.M. Garland, et al., Influence of
        soot mixing state on aerosol light absorption and single
        scattering albedo during air mass aging at a polluted regional
        site in northeastern China, J. Geophys. Res. 
114, D00G10
        (2009), 
        
http://dx.doi.org/10.1029/2008JD010883
        [29] W. Birmili, F. Stratmann, A. Wiedensohler, D. Covert, L.M.
        Russell, and O. Berg, Determination of differential mobility
        analyzer transfer functions using identical instruments in
        series, Aerosol Sci. Technol. 
27(2), 215–223 (1997), 
        
http://dx.doi.org/10.1080/02786829708965468
        [30] M. Gysel, G.B. McFiggans, and H. Coe, Inversion of tandem
        differential mobility analyser (TDMA) measurements, J. Aerosol
        Sci. 
40(2), 134–151 (2009), 
        
http://dx.doi.org/10.1016/j.jaerosci.2008.07.013
        [31] H.E. Manninen, T. Nieminen, I. Riipinen, et al., Charged
        and total particle formation and growth rates during EUCAARI
        2007 campaign in Hyytiälä, Atmos. Chem. Phys. 
9(12),
        4077–4089 (2009), 
        
http://dx.doi.org/10.5194/acp-9-4077-2009
        [32] J. Heintzenberg, B. Wehner, and W. Birmili, 'How to find
        bananas in the atmospheric aerosol': new approach for analyzing
        atmospheric nucleation and growth events, Tellus B 
59(2),
        273–282 (2007), 
        
http://dx.doi.org/10.1111/j.1600-0889.2007.00249.x
        [33] L. Ran, W-L. Lin, P-C. Wang, and Z-Z. Deng, Surface trace
        gases at a rural site between the megacities of Beijing and
        Tianjin, Atmos. Ocean. Sci. Lett. 
7(3), 230 (2014), 
        
http://dx.doi.org/10.3878/j.issn.1674-2834.13.0115
        [34] S.S. Brown, T.B. Ryerson, A.G. Wollny, et al., Variability
        in nocturnal nitrogen oxide processing and its role in regional
        air quality, Science 
311(5757), 67–70 (2006), 
        
http://dx.doi.org/10.1126/science.1120120
        [35] N.M. Donahue, J.H. Kroll, J.G. Anderson, and K.L.
        Demerjian, Direct observation of OH production from the
        ozonolysis of olefins, Geophys. Res. Lett. 
25(1), 59–62
        (1998), 
        
http://dx.doi.org/10.1029/97GL53560
        [36] S.S. Brown, H. Stark, T.B. Ryerson, et al., Nitrogen oxides
        in the nocturnal boundary layer: Simultaneous in situ
        measurements of NO
3, N
2O
5, NO
2,
        NO, and O
3, J. Geophys. Res. 
108(D9), 4299
        (2003), 
        
http://dx.doi.org/10.1029/2002JD002917
        [37] A. Geyer, B. Alicke, S. Konrad, T. Schmitz, J. Stutz, and
        U. Platt, Chemistry and oxidation capacity of the nitrate
        radical in the continental boundary layer near Berlin, J.
        Geophys. Res. 
106(D8), 8013–8025 (2001), 
        
http://dx.doi.org/10.1029/2000JD900681
        [38] H. Sakurai, M.A. Fink, P.H. McMurry, L. Mauldin, K.F.
        Moore, J.N. Smith, and F.L. Eisele, Hygroscopicity and
        volatility of 4–10 nm particles during summertime atmospheric
        nucleation events in urban Atlanta, J. Geophys. Res. 
110,
        D22504 (2005), 
        
http://dx.doi.org/10.1029/2005JD005918
        [39] R. Zhang, A. Khalizov, L. Wang, M. Hu, and W. Xu,
        Nucleation and growth of nanoparticles in the atmosphere, Chem.
        Rev. 
112(3), 1957–2011 (2011), 
        
http://dx.doi.org/10.1021/cr2001756
        [40] U. Kuhn, J. Sintermann, C. Spirig, M. Jocher, C. Ammann,
        and A. Neftel, Basic biogenic aerosol precursors: Agricultural
        source attribution of volatile amines revised, Geophys. Res.
        Lett. 
38(16), L16811 (2011), 
        
http://dx.doi.org/10.1029/2011GL047958
        [41] T. Berndt, F. Stratmann, M. Sipilä, et al., Laboratory
        study on new particle formation from the reaction OH+SO
2:
        influence of experimental conditions, H
2O vapour, NH
3
        and the amine tert-butylamine on the overall process, Atmos.
        Chem. Phys. 
10(15), 7101–7116 (2010), 
        
http://dx.doi.org/10.5194/acp-10-7101-2010
        [42] M.E. Erupe, A.A. Viggiano, and S.H. Lee, The effect of
        trimethylamine on atmospheric nucleation involving H
2SO
4,
        Atmos. Chem. Phys. 
11(10), 4767–4775, (2011), 
        
http://dx.doi.org/10.5194/acp-11-4767-2011
        [43] H. Yu, R. McGraw, and S.H. Lee, Effects of amines on
        formation of sub‐3 nm particles and their subsequent growth,
        Geophys. Res. Lett. 
39(2), L02807 (2012), 
        
http://dx.doi.org/10.1029/2011GL050099