[PDF]    http://dx.doi.org/10.3952/physics.v55i1.3059

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 6370 (2015)


METHODS FOR AUTOFLUORESCENCE ANALYSIS OF UTERINE CAVITY WASHINGS
Vilmantas Gėgžnaa,b, Povilas Sladkevičiusc, Lil Valentinc, and Aurelija Vaitkuvienėa

aInstitute of Applied Research, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: aurelija.vaitkuviene@tmi.vu.lt
bFaculty of Natural Sciences, Vilnius University, M.K. Čiurlionio 21/27, LT-03101 Vilnius, Lithuania
cDepartment of Obstetrics and Gynecology, Skåne University Hospital, Lund University, Malmö, Sweden

Received 12 November 2014; revised 26 February 2015; accepted 20 March 2015

The diagnostics of endometrial pathology can be done by obtaining information at the molecular level, e. g. using the autofluorescence-based technique. Thus, for the first time an experimental study was performed on waste material of uterine cavity washing specimens to evaluate suitability of the technique for diagnostics. The specimens were obtained from 32 patients who had a conventional uterine hydrosonography procedure. A portable Nd:YAG 355 nm microlaser was used to excite autofluorescence at the point of care. Various algorithms of multivariate curve resolution and artificial neural networks were utilized for spectra analysis. The spectra were classified according to histological and ultrasound diagnosis. Receiver operating characteristic (ROC) curve analysis was used to make statistical decisions. The results showed that it was possible to distinguish all compared groups: pathologic vs non-pathologic endometrium (sensitivity 97.3 ± 5.2%, specificity 91.7 ± 7%, AUC (area under the ROC curve) 0.96 ± 0.04), malignant endometrium vs endometrial polyps (sensitivity 100 ± 0%, specificity 92.0 ± 10.6%, AUC = 0.98 ± 0.07), and secretory menstrual cycle phase vs proliferative phase (sensitivity 87.5 ± 13.2%, specificity 94.4 ± 7.4%, AUC = 0.88 ± 0.10). To conclude, uterine cavity washing specimens could be used for endometrial pathology recognition using the autofluorescence-based technique in clinical setting. It will possibly speed up the treatment decision making for endometrial pathology.
Keywords: endometrium, tissue fluorescence, photodiagnostics, multivariate analysis
PACS: 02.50.Sk, 42.62.Be, 87.15.A-

GIMDOS ERTMĖS NUOPLOVŲ AUTOFLUORESCENCIJOS ANALIZĖS METODIKA

Vilmantas Gėgžnaa,b, Povilas Sladkevičiusc, Lil Valentinc, Aurelija Vaitkuvienėa
aVilniaus universiteto Taikomųjų mokslų institutas, Vilnius, Lietuva
bVilniaus universiteto Gamtos mokslų fakultetas, Vilnius, Lietuva
cSkonės universitetinės ligoninės Akušerijos ir ginekologijos skyrius, Lundo universitetas, Malmė, Švedija

Gimdos gleivinės patologiją parodo molekulinio lygio pakitimai, kuriuos galima nustatyti naudojant informaciją, gaunamą autofluorescencijos reiškiniu pagrįstais metodais. Šiame darbe pirmą kartą atlikta naujo tipo bandinių – nuoplovų nuosėdų, gaunamų po standartinio kontrastinio ultragarsinio gimdos tyrimo (hidrosonografijos), – analizė. Darbo tikslas – išbandyti gimdos gleivinės ligų diagnostikos metodiką. Eksperimentai atlikti tiriant 32 pacienčių gimdos ertmės nuoplovas. Fluorescencija žadinta 355 nm nešiojamojo lazerio spinduliuote. Spektrų analizei naudoti pagrindinių komponentų bei kiti spektrų skaidymo į komponentus metodai, dirbtinių neuroninių tinklų algoritmas. Statistiniam sprendimui priimti naudota stebėtojo operacinės charakteristikos (ROC) kreivių analizė. Tikrosios medicininės diagnozės nustatytos ištyrus histologijos ir ultragarso tyrimais. Taikyta metodika buvo galima identifikuoti visas tarpusavyje lygintas medicinines grupes: patologinius gimdos gleivinės pakitimus atskirti nuo sveikos gleivinės (jautrumas 97,3 ± 5,2 %, specifiškumas 91,7 ± 7 %, AUC (t. y. plotas po ROC kreive) – 0,96 ± 0,04), piktybinius pakitimus nuo polipų (jautrumas 100 ± 0 %, specifiškumas 92,0 ± 10,6 %, AUC – 0,98 ± 0,07), sekrecinę mėnesinių ciklo fazę nuo proliferacinės (jautrumas 87,5 ± 13,2 %, specifiškumas 94,4 ± 7,4 %, AUC = 0,88 ± 0,10). Rezultatai rodo, kad metodika potencialiai galėtų būti naudojama endometriumo ligoms greitai ir preliminariai diagnozuoti, t. y. būtų atliekama pacienčių apsilankymo pas gydytoją metu.

References / Nuorodos

[1] A. Vaitkuviene, V. Gegzna, R. Kurtinaitiene, and J.V. Vaitkus, Cervical smear photodiagnosis by fluorescence, Photomed. Laser Surg. 30, 268–274 (2012),
http://dx.doi.org/10.1089/pho.2011.3092
[2] A. Vaitkuviene, E. Auksorius, D. Fuchs, and V. Gavriushin, Chemomertical analysis of endometrial tissue fluorescence spectra, Proc. SPIE 4903, 240–245 (2002),
http://dx.doi.org/10.1117/12.486602
[3] R. Cancino, J.I. Vela, I. Sullivan, J.A. Buil, and C.A. Muñoz, Regression of late onset choroidal metastasis from a breast carcinoma with letrozole, Case Rep. Ophthalmol. 2, 382–386 (2011),
http://dx.doi.org/10.1159/000334937
[4] M. Kyrgiou, J. Chatterjee, R. Lyus, T. Amin, and S. Ghaem-Maghami, The role of cytology and other prognostic factors in endometrial cancer, J. Obstet. Gynaecol. 33, 729–734 (2013),
http://dx.doi.org/10.3109/01443615.2013.813916
[5] G. Opolskienė, The Use of Ultrasound in the Prediction of Endometrial Cancer in Women with Postmenopausal Bleeding, Academic Dissertation (Faculty of Medicine, Lund University, Malmo, 2010)
[6] G. Opolskiene, P. Sladkevicius, and L. Valentin, Prediction of endometrial malignancy in women with postmenopausal bleeding and sonographic endometrial thickness ≥4.5 mm, Ultrasound Obstet. Gynecol. 37, 232–240 (2011),
http://dx.doi.org/10.1002/uog.8871
[7] A. Vaitkuviene, E. Auksorius, V. Gavryushin, and J.V. Vaitkus, Light induced fluorescence in differentiation of endometrial pathology: multivariate statistical treatment, Proc. SPIE 4606, 23–29 (2001),
http://dx.doi.org/10.1117/12.446713
[8] V. Gavryushin, E. Auksorius, D. Fuchs, and A. Vaitkuviene, The role of neopterin in the fluorescence investigations of biotissue pathology, Lith. J. Phys. 42, 111–118 (2002)
[9] E. Auksorius, S. Juodkazis, H. Misawa, J.V. Vaitkus, and A. Vaitkuviene, Analysis of fluorescence excitation emission matrices of endometrial tissue, Proc. SPIE 5610, 83–86 (2004),
http://dx.doi.org/10.1117/12.584386
[10] V. Gegzna, P. Sladkevicius, A. Vaitkuviene, and J. Vaitkus, in: Laser Florence 2011, Abstracts of the 25th International Congress Laser Medicine & IALMS Courses, jointly with the Congress of the International Phototherapy Association, November 4–5, 2011, Florence, Italy, Lasers Med. Sci. 26(Suppl 1), S25 (2011),
http://dx.doi.org/10.1007/s10103-011-0999-6
[11] V. Gėgžna, A. Vaitkuvienė, and P. Sladkevičius, An impact of different sample preparation methods for fluorescence spectra of saline used in saline infusion hydrosonography of uterus, in: Open Readings 2012 of the 55th Scientific Conference for Young Students of Physics and Natural Sciences (Faculty of Physics, Vilnius University, Lithuania, 2012)
[12] G. Opolskiene, P. Sladkevicius, and L. Valentin, Two- and three-dimensional saline contrast sonohysterography: interobserver agreement, agreement with hysteroscopy and diagnosis of endometrial malignancy, Ultrasound Obstet. Gynecol. 33, 574–582 (2009),
http://dx.doi.org/10.1002/uog.6350
[13] M. Brydegaard, N. Haj-Hosseini, K. Wårdell, and S. Andersson-Engels, Photobleaching-insensitive fluorescence diagnostics in skin and brain tissue, IEEE Photonics J. 3, 407–421 (2011),
http://dx.doi.org/10.1109/JPHOT.2011.2141656
[14] G.A. Wagnières, W.M. Star, and B.C. Wilson, In vivo fluorescence spectroscopy and imaging for oncological applications, Photochem. Photobiol. 68, 603–632 (1998),
http://dx.doi.org/10.1111/j.1751-1097.1998.tb02521.x
[15] N. Ramanujam, Fluorescence spectroscopy of neoplastic and non-neoplastic tissues, Neoplasia 2, 89–117 (2000),
http://dx.doi.org/10.1038/sj.neo.7900077
[16] A. Vaitkuviene, V. Gegzna, S. Juodkazis, S. Jursenas, S. Miasojedovas, R. Kurtinaitiene, J. Rimiene, and J. Vaitkus, Fluorescence spectrum and decay measurement for HSIL vs normal cytology differentiation in liquid PAP smear supernatant, AIP Conf. Proc. 1142(1), 21–25 (2009),
http://dx.doi.org/10.1063/1.3175625
[17] A. Vaitkuviene, E. Auksorius, D. Ramasauskaite, A. Smilgeviciute, O. Tamasauskas, R. Vanseviciute, and D. Veleckas, LIF analysis of cervical mucus and amniotic fluid for maturity monitoring in pregnancy, Proc. SPIE 5610, 6–13 (2004),
http://dx.doi.org/10.1117/12.584317
[18] M. Mongiat, S. Marastoni, G. Ligresti, E. Lorenzon, M. Schiappacassi, R. Perris, S. Frustaci, and A. Colombatti, The extracellular matrix glycoprotein elastin microfibril interface located protein 2: A dual role in the tumor microenvironment, Neoplasia 12, 294–304 (2010),
http://dx.doi.org/10.1593/neo.91930
[19] C.N. Battlehner, E.G. Caldini, J.C.R. Pereira, E.H. Luque, and G.S. Montes, How to measure the increase in elastic system fibres in the lamina propria of the uterine cervix of pregnant rats, J. Anat. 203, 405–418 (2003),
http://dx.doi.org/10.1046/j.1469-7580.2003.00227.x
[20] J.W. Goldzieher, J.M. Bodenchuk, and P. Nolan, The fluorescence reactions of steroids. I. Estrogens, J. Biol. Chem. 199, 621–629 (1952),
http://www.jbc.org/content/199/2/621.full.pdf+html
[21] F. Sánchez-Barbero, J. Strassner, R. García-Cañero, W. Steinhilber, and C. Casals, Role of the degree of oligomerization in the structure and function of human surfactant protein A, J. Biol. Chem. 280, 7659–7670 (2005),
http://dx.doi.org/10.1074/jbc.M410266200
[22] A. Agrawal, U. Utzinger, C. Brookner, C. Pitris, M.F. Mitchell, and R. Richards-Kortum, Fluorescence spectroscopy of the cervix: Influence of acetic acid, cervical mucus, and vaginal medications, Lasers Surg. Med. 25, 237–249 (1999),
http://dx.doi.org/10.1002/(SICI)1096-9101(1999)25:3<237::AID-LSM8>3.0.CO;2-F
[23] X.L. Liu, F. Wu, and N.S. Deng, Photodegradation of 17α-ethynylestradiol in aqueous solution exposed to a high-pressure mercury lamp (250 W), Environ. Pollut., 126, 393–398 (2003),
http://dx.doi.org/10.1016/S0269-7491(03)00229-X
[24] N. Ahmed, C. Dubuc, J. Rousseau, F. Bénard, and J.E. van Lier, Synthesis, characterization, and estrogen receptor binding affinity of flavone-, indole-, and furan-estradiol conjugates, Bioorg. Med. Chem. Lett., 17, 3212–3216 (2007),
http://dx.doi.org/10.1016/j.bmcl.2007.03.016
[25] Y. Rodriguez-Lazcano, V. Correcher, and J. Garcia-Guinea, Luminescence emission of natural NaCl, Radiat. Phys. Chem. 81, 126–130 (2012),
http://dx.doi.org/10.1016/j.radphyschem.2011.07.012
[26] H. Yang, Y.M. Yoo, E.M. Jung, K.C. Choi, and E.B. Jeung, Uterine expression of sodium/potassium/calcium exchanger 3 and its regulation by sex-steroid hormones during the estrous cycle of rats, Mol. Reprod. Dev. 77, 971–977 (2010),
http://dx.doi.org/10.1002/mrd.21245
[27] K.T. Schomacker, J.K. Frisoli, C.C. Compton, T.J. Flotte, J.M. Richter, T.F. Deutsch, and N.S. Nishioka, Ultraviolet laser-induced fluorescence of colonic polyps, Gastroenterology 102, 1155–1160 (1992)
[28] R.S. DaCosta, H. Andersson, M. Cirocco, N.E. Marcon, and B.C. Wilson, Autofluorescence characterisation of isolated whole crypts and primary cultured human epithelial cells from normal, hyperplastic, and adenomatous colonic mucosa, J. Clin. Pathol. 58, 766–774 (2005),
http://dx.doi.org/10.1136/jcp.2004.023804
[29] G.H. Bourne, Lipofuscin, Prog. Brain Res. 40, 187–201 (1973),
http://dx.doi.org/10.1016/S0079-6123(08)60687-1
[30] M. Lorencini, J.A.F. Silva, C.A. Almeida, A. Bruni-Cardoso, H.F. Carvalho, and D.R. Stach-Machado, A new paradigm in the periodontal disease progression: Gingival connective tissue remodeling with simultaneous collagen degradation and fibers thickening, Tissue Cell 41, 43–50 (2009),
http://dx.doi.org/10.1016/j.tice.2008.07.001