Received 12 November 2014; revised 26 February 2015; accepted 20
      March 2015
      
      
Gimdos gleivinės patologiją
        parodo molekulinio lygio pakitimai, kuriuos galima nustatyti
        naudojant informaciją, gaunamą autofluorescencijos reiškiniu
        pagrįstais metodais. Šiame darbe pirmą kartą atlikta naujo tipo
        bandinių – nuoplovų nuosėdų, gaunamų po standartinio
        kontrastinio ultragarsinio gimdos tyrimo (hidrosonografijos), –
        analizė. Darbo tikslas – išbandyti gimdos gleivinės ligų
        diagnostikos metodiką. Eksperimentai atlikti tiriant 32
        pacienčių gimdos ertmės nuoplovas. Fluorescencija žadinta 355 nm
        nešiojamojo lazerio spinduliuote. Spektrų analizei naudoti
        pagrindinių komponentų bei kiti spektrų skaidymo į komponentus
        metodai, dirbtinių neuroninių tinklų algoritmas. Statistiniam
        sprendimui priimti naudota stebėtojo operacinės charakteristikos
        (ROC) kreivių analizė. Tikrosios medicininės diagnozės
        nustatytos ištyrus histologijos ir ultragarso tyrimais. Taikyta
        metodika buvo galima identifikuoti visas tarpusavyje lygintas
        medicinines grupes: patologinius gimdos gleivinės pakitimus
        atskirti nuo sveikos gleivinės (jautrumas 97,3 ± 5,2 %,
        specifiškumas 91,7 ± 7 %, AUC (t. y. plotas po ROC kreive) –
        0,96 ± 0,04), piktybinius pakitimus nuo polipų (jautrumas 100 ±
        0 %, specifiškumas 92,0 ± 10,6 %, AUC – 0,98 ± 0,07), sekrecinę
        mėnesinių ciklo fazę nuo proliferacinės (jautrumas 87,5 ± 13,2
        %, specifiškumas 94,4 ± 7,4 %, AUC = 0,88 ± 0,10). Rezultatai
        rodo, kad metodika potencialiai galėtų būti naudojama
        endometriumo ligoms greitai ir preliminariai diagnozuoti, t. y.
        būtų atliekama pacienčių apsilankymo pas gydytoją metu.
      References
/
          Nuorodos
        
        [1] A. Vaitkuviene, V.
        Gegzna, R. Kurtinaitiene, and J.V. Vaitkus, Cervical smear
        photodiagnosis by fluorescence, Photomed. Laser Surg. 
30,
        268–274 (2012), 
        
http://dx.doi.org/10.1089/pho.2011.3092
        [2] A. Vaitkuviene, E. Auksorius, D. Fuchs, and V. Gavriushin,
        Chemomertical analysis of endometrial tissue fluorescence
        spectra, Proc. SPIE 
4903, 240–245 (2002), 
        
http://dx.doi.org/10.1117/12.486602
        [3] R. Cancino, J.I. Vela, I. Sullivan, J.A. Buil, and C.A.
        Muñoz, Regression of late onset choroidal metastasis from a
        breast carcinoma with letrozole, Case Rep. Ophthalmol. 
2,
        382–386 (2011), 
        
http://dx.doi.org/10.1159/000334937
        [4] M. Kyrgiou, J. Chatterjee, R. Lyus, T. Amin, and S.
        Ghaem-Maghami, The role of cytology and other prognostic factors
        in endometrial cancer, J. Obstet. Gynaecol. 
33, 729–734
        (2013), 
        
http://dx.doi.org/10.3109/01443615.2013.813916
        [5] G. Opolskienė, 
The Use of Ultrasound in the Prediction
          of Endometrial Cancer in Women with Postmenopausal Bleeding,
        Academic Dissertation (Faculty of Medicine, Lund University,
        Malmo, 2010)
        [6] G. Opolskiene, P. Sladkevicius, and L. Valentin, Prediction
        of endometrial malignancy in women with postmenopausal bleeding
        and sonographic endometrial thickness ≥4.5 mm, Ultrasound
        Obstet. Gynecol. 
37, 232–240 (2011), 
        
http://dx.doi.org/10.1002/uog.8871
        [7] A. Vaitkuviene, E. Auksorius, V. Gavryushin, and J.V.
        Vaitkus, Light induced fluorescence in differentiation of
        endometrial pathology: multivariate statistical treatment, Proc.
        SPIE 
4606, 23–29 (2001), 
        
http://dx.doi.org/10.1117/12.446713
        [8] V. Gavryushin, E. Auksorius, D. Fuchs, and A. Vaitkuviene,
        The role of neopterin in the fluorescence investigations of
        biotissue pathology, Lith. J. Phys. 
42, 111–118 (2002)
        [9] E. Auksorius, S. Juodkazis, H. Misawa, J.V. Vaitkus, and A.
        Vaitkuviene, Analysis of fluorescence excitation emission
        matrices of endometrial tissue, Proc. SPIE 
5610, 83–86
        (2004), 
        
http://dx.doi.org/10.1117/12.584386
        [10] V. Gegzna, P. Sladkevicius, A. Vaitkuviene, and J. Vaitkus,
        in: 
Laser Florence 2011, Abstracts of the 25th International
          Congress Laser Medicine & IALMS Courses, jointly with
        the Congress of the International Phototherapy Association,
        November 4–5, 2011, Florence, Italy, Lasers Med. Sci. 26(Suppl
        1), S25 (2011), 
        
http://dx.doi.org/10.1007/s10103-011-0999-6
        [11] V. Gėgžna, A. Vaitkuvienė, and P. Sladkevičius, An impact
        of different sample preparation methods for fluorescence spectra
        of saline used in saline infusion hydrosonography of uterus, in:
        
Open Readings 2012 of the 55th Scientific Conference for
          Young Students of Physics and Natural Sciences (Faculty of
        Physics, Vilnius University, Lithuania, 2012)
        [12] G. Opolskiene, P. Sladkevicius, and L. Valentin, Two- and
        three-dimensional saline contrast sonohysterography:
        interobserver agreement, agreement with hysteroscopy and
        diagnosis of endometrial malignancy, Ultrasound Obstet. Gynecol.
        
33, 574–582 (2009), 
        
http://dx.doi.org/10.1002/uog.6350
        [13] M. Brydegaard, N. Haj-Hosseini, K. Wårdell, and S.
        Andersson-Engels, Photobleaching-insensitive fluorescence
        diagnostics in skin and brain tissue, IEEE Photonics J. 
3,
        407–421 (2011), 
        
http://dx.doi.org/10.1109/JPHOT.2011.2141656
        [14] G.A. Wagnières, W.M. Star, and B.C. Wilson, In vivo
        fluorescence spectroscopy and imaging for oncological
        applications, Photochem. Photobiol. 
68, 603–632 (1998),
        
        
http://dx.doi.org/10.1111/j.1751-1097.1998.tb02521.x
        [15] N. Ramanujam, Fluorescence spectroscopy of neoplastic and
        non-neoplastic tissues, Neoplasia 
2, 89–117 (2000), 
        
http://dx.doi.org/10.1038/sj.neo.7900077
        [16] A. Vaitkuviene, V. Gegzna, S. Juodkazis, S. Jursenas, S.
        Miasojedovas, R. Kurtinaitiene, J. Rimiene, and J. Vaitkus,
        Fluorescence spectrum and decay measurement for HSIL vs normal
        cytology differentiation in liquid PAP smear supernatant, AIP
        Conf. Proc. 
1142(1), 21–25 (2009), 
        
http://dx.doi.org/10.1063/1.3175625
        [17] A. Vaitkuviene, E. Auksorius, D. Ramasauskaite, A.
        Smilgeviciute, O. Tamasauskas, R. Vanseviciute, and D. Veleckas,
        LIF analysis of cervical mucus and amniotic fluid for maturity
        monitoring in pregnancy, Proc. SPIE 
5610, 6–13 (2004), 
        
http://dx.doi.org/10.1117/12.584317
        [18] M. Mongiat, S. Marastoni, G. Ligresti, E. Lorenzon, M.
        Schiappacassi, R. Perris, S. Frustaci, and A. Colombatti, The
        extracellular matrix glycoprotein elastin microfibril interface
        located protein 2: A dual role in the tumor microenvironment,
        Neoplasia 
12, 294–304 (2010), 
        
http://dx.doi.org/10.1593/neo.91930
        [19] C.N. Battlehner, E.G. Caldini, J.C.R. Pereira, E.H. Luque,
        and G.S. Montes, How to measure the increase in elastic system
        fibres in the lamina propria of the uterine cervix of pregnant
        rats, J. Anat. 
203, 405–418 (2003), 
        
http://dx.doi.org/10.1046/j.1469-7580.2003.00227.x
        [20] J.W. Goldzieher, J.M. Bodenchuk, and P. Nolan, The
        fluorescence reactions of steroids. I. Estrogens, J. Biol. Chem.
        
199, 621–629 (1952), 
        
http://www.jbc.org/content/199/2/621.full.pdf+html
        [21] F. Sánchez-Barbero, J. Strassner, R. García-Cañero, W.
        Steinhilber, and C. Casals, Role of the degree of
        oligomerization in the structure and function of human
        surfactant protein A, J. Biol. Chem. 
280, 7659–7670
        (2005), 
        
http://dx.doi.org/10.1074/jbc.M410266200
        [22] A. Agrawal, U. Utzinger, C. Brookner, C. Pitris, M.F.
        Mitchell, and R. Richards-Kortum, Fluorescence spectroscopy of
        the cervix: Influence of acetic acid, cervical mucus, and
        vaginal medications, Lasers Surg. Med. 
25, 237–249
        (1999), 
        
http://dx.doi.org/10.1002/(SICI)1096-9101(1999)25:3<237::AID-LSM8>3.0.CO;2-F
        [23] X.L. Liu, F. Wu, and N.S. Deng, Photodegradation of
        17α-ethynylestradiol in aqueous solution exposed to a
        high-pressure mercury lamp (250 W), Environ. Pollut., 
126,
        393–398 (2003), 
        
http://dx.doi.org/10.1016/S0269-7491(03)00229-X
        [24] N. Ahmed, C. Dubuc, J. Rousseau, F. Bénard, and J.E. van
        Lier, Synthesis, characterization, and estrogen receptor binding
        affinity of flavone-, indole-, and furan-estradiol conjugates,
        Bioorg. Med. Chem. Lett., 
17, 3212–3216 (2007), 
        
http://dx.doi.org/10.1016/j.bmcl.2007.03.016
        [25] Y. Rodriguez-Lazcano, V. Correcher, and J. Garcia-Guinea,
        Luminescence emission of natural NaCl, Radiat. Phys. Chem. 
81,
        126–130 (2012), 
        
http://dx.doi.org/10.1016/j.radphyschem.2011.07.012
        [26] H. Yang, Y.M. Yoo, E.M. Jung, K.C. Choi, and E.B. Jeung,
        Uterine expression of sodium/potassium/calcium exchanger 3 and
        its regulation by sex-steroid hormones during the estrous cycle
        of rats, Mol. Reprod. Dev. 
77, 971–977 (2010), 
        
http://dx.doi.org/10.1002/mrd.21245
        [27] K.T. Schomacker, J.K. Frisoli, C.C. Compton, T.J. Flotte,
        J.M. Richter, T.F. Deutsch, and N.S. Nishioka, Ultraviolet
        laser-induced fluorescence of colonic polyps, Gastroenterology 
102,
        1155–1160 (1992)
        [28] R.S. DaCosta, H. Andersson, M. Cirocco, N.E. Marcon, and
        B.C. Wilson, Autofluorescence characterisation of isolated whole
        crypts and primary cultured human epithelial cells from normal,
        hyperplastic, and adenomatous colonic mucosa, J. Clin. Pathol. 
58,
        766–774 (2005), 
        
http://dx.doi.org/10.1136/jcp.2004.023804
        [29] G.H. Bourne, Lipofuscin, Prog. Brain Res. 
40,
        187–201 (1973), 
        
http://dx.doi.org/10.1016/S0079-6123(08)60687-1
        [30] M. Lorencini, J.A.F. Silva, C.A. Almeida, A. Bruni-Cardoso,
        H.F. Carvalho, and D.R. Stach-Machado, A new paradigm in the
        periodontal disease progression: Gingival connective tissue
        remodeling with simultaneous collagen degradation and fibers
        thickening, Tissue Cell 
41, 43–50 (2009), 
        
http://dx.doi.org/10.1016/j.tice.2008.07.001