Received 3 February 2015; revised 6 March 2015; accepted 20
      March 2015
      
      
KOMPOZITŲ SU SVOGŪNINĖS ANGLIES
            IR DAUGIASIENIŲ ANGLIES NANOVAMZDELIŲ UŽPILDU ELEKTRINĖS IR
            DIELEKTRINĖS SAVYBĖS
        
      Straipsnyje aptariamos kompozitų
        su anglies nanovamzdelių, svogūninės anglies, mišriu
        nanovamzdelių ir svogūninės anglies užpildu plačiame dažnių
        diapazone elektrinės bei dielektrinės savybės.
        Kompozituose su anglies nanovamzdeliais yra stebimos didesnės
        dielektrinės skvarbos ir laidumo vertės nei kompozituose su
        svogūninės anglies užpildu. Kompozitų su svogūninės anglies
        užpildu elektrinės savybės gali būti pagerintos įterpiant
        nedidelį kiekį anglies nanovamzdelių. Mišriuose kompozituose dėl
        sumažėjusio atstumo tarp anglies intarpų mažėja potencinis
        barjeras elektronams tuneliuoti, todėl padidėja kompozitų
        dielektrinė skvarba ir elektrinis laidumas.
      References
/
          Nuorodos
        
        [1] F. Qin and C.
        Brosseau, A review and analysis of microwave absorption in
        polymer composites filled with carbonaceous particles, J. Appl.
        Phys. 
111, 061301 (2012),
        
http://dx.doi.org/10.1063/1.3688435
        [2] G. Inzelt, 
Conducting Polymers: A New Era in
          Electrochemistry (Springer, Berlin, 2008), 
        
http://www.springer.com/us/book/9783642276200
        [3] K.J. Vinoy and R.M. Jha, 
Radar Absorbing Materials from
          Theory to Design and Characterization (Kluwer Academic
        Publishers, Boston, 1996),
        
http://dx.doi.org/10.1007/978-1-4613-0473-9
        [4] M.J. Jiang, Z.M. Dang, and H.P. Xu, Giant dielectric
        constant and resistance-pressure sensitivity in carbon
        nanotubes/rubber nanocomposites with low percolation threshold,
        Appl. Phys. Lett. 
90, 042912 (2007),
        
http://dx.doi.org/10.1063/1.2432232
        [5] W. Bauhofer and Z. Kovacs, A review and analysis of
        electrical percolation in carbon nanotube polymer composites,
        Compos. Sci. Technol. 
69, 1486 (2009),
        
http://dx.doi.org/10.1016/j.compscitech.2008.06.018
        [6] L.J. Adriaanse, J.A. Reedijk, P.A.A. Teunissen, H.B. Brom,
        M.A.J. Michels, and J.C.M. Brokken-Zijp, High-dilution
        carbon-black/polymer composites: Hierarchical percolating
        network derived from Hz to THz ac conductivity, Phys. Rev. Lett.
        
78, 1755 (1997),
        
http://dx.doi.org/10.1103/PhysRevLett.78.1755
        [7] V.L. Kuznetsov, Yu.V. Butenko, A.L. Chuvilin, A.I.
        Romanenko, and A.V. Okotrub, Electrical resistivity of
        graphitized ultra-disperse diamond and onion-like carbon, Chem.
        Phys. Lett. 
336, 5–6 (2001),
        
http://dx.doi.org/10.1016/S0009-2614(01)00135-X
        [8] J. Macutkevic, I. Kranauskaite, J. Banys, S. Moseenkov, V.
        Kuznetsov, and O. Shenderova, Metalinsulator transition and size
        dependent electrical percolation in onion-like
        carbon/polydimethylsiloxane composites, J. Appl. Phys. 
115,
        213702 (2014),
        
http://dx.doi.org/10.1063/1.4880995
        [9] J. Macutkevic, D. Seliuta, G. Valusis, J. Banys, V.
        Kuznetsov, S. Moseenkov, and O. Shenderova, High dielectric
        permittivity of percolative composites based on onion-like
        carbon, Appl. Phys. Lett. 
95, 112901 (2009),
        
http://dx.doi.org/10.1063/1.3224187
        [10] S. Kirkpatrick, Percolation phenomena in higher dimensions:
        Approach to the mean-field limit, Phys. Rev. Lett. 
36,
        69 (1976),
        
http://dx.doi.org/10.1103/PhysRevLett.36.69
        [11] J. Macutkevic, D. Seliuta, G. Valusis, J. Banys, S. Hens,
        V. Borjanovic, V. Kuznetsov, and O. Shenderova, Effect of
        thermal treatment conditions on the properties of onion-like
        carbon based polymer composite, Compos. Sci. Technol. 
70,
        2298 (2010),
        
http://dx.doi.org/10.1016/j.compscitech.2010.09.008
        [12] J. Chen, X. Ch. Du, W.B. Zhang, J.H. Yang, N. Zhang, T.
        Huang and Y. Wang, Synergistic effect of carbon nanotubes and
        carbon black on electrical conductivity of PA6/ABS blend,
        Compos. Sci. Technol. 
81, 1–8 (2013),
        
http://dx.doi.org/10.1016/j.compscitech.2013.03.014
        [13] E. Bilotti, H. Zhang, H. Deng, R. Zhang, Q. Fu, and T.
        Peijs, Controlling the dynamic percolation of carbon nanotube
        based conductive polymer composites by addition of secondary
        nanofillers: The effect on electrical conductivity and tuneable
        sensing behaviour, Compos. Sci. Technol. 
74, 84 (2013),
        
http://dx.doi.org/10.1016/j.compscitech.2012.10.008
        [14] J. Sumfleth, X.C. Adroher, and K. Shulte, Synergistic
        effects in network formation and electrical properties of hybrid
        epoxy nanocomposites containing multi-wall carbon nanotubes and
        carbon black, J. Mater. Sci. 
44, 3241 (2009),
        
http://dx.doi.org/10.1007/s10853-009-3434-7
        [15] J. Grigas, 
Microwave Dielectric Spectroscopy of
          Ferroelectrics and Related Materials (Gordon and Breach
        Science Publishers, Amsterdam, 1996), 
        
http://www.amazon.co.uk/Microwave-Dielectric-Spectroscopy-Ferroelectrics-Ferroelectricity/dp/2884491902/
        [16] H.M. Kim, M.S. Choi, J. Joo, J.J. Cho, and H.S. Yoon,
        Complexity in charge transport for multiwalled carbon nanotube
        and poly(methyl methacrylate) composites, Phys. Rev. B 
74,
        054202 (2006),
        
http://dx.doi.org/10.1103/PhysRevB.74.054202
        [17] J. Macutkevic, R. Adomavicius, A. Krotkus, J. Banys, V.
        Kuznetsov, S. Moseenkov, A. Romanenko, and O. Shenderova,
        Localization and electrical transport in onion-like carbon based
        composites, J. Appl. Phys. 
111, 103701 (2012),
        
http://dx.doi.org/10.1063/1.4714555
        [18] D. Almond, G.K. Duncan, and A.R. West, The determination of
        hopping rates and carrier concentrations in ionic conductors by
        a new analysis of ac conductivity, Solid State Ionics 
8,
        159 (1983),
        
http://dx.doi.org/10.1016/0167-2738(83)90079-6
        [19] P. Sheng, E.K. Sichel, and J.I. Gittleman,
        Fluctuation-included tunneling conduction in
        carbonpolyvinylchloride composites, Phys. Rev. Lett. 
40,
        1197 (1978),
        
http://dx.doi.org/10.1103/PhysRevLett.40.1197