CONSTITUTIVE RELATIONS IN
        CLASSICAL OPTICS IN TERMS OF GEOMETRIC ALGEBRA
      Adolfas Dargys
      
Semiconductor Physics Institute, Center for Physical Sciences
        and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
      E-mail: adolfas.dargys@ftmc.lt
      
      Received 10 February 2015; revised 30 March 2015; accepted 15 June
      2015
      
      
        To have a closed system, the Maxwell
          electromagnetic equations should be supplemented by
          constitutive relations which describe medium properties and
          connect primary fields (E, B) with secondary
          ones (D, H). J.W. Gibbs and O. Heaviside
          introduced the basis vectors {i, j, k}
          to represent the fields and constitutive relations in the
          three-dimensional vectorial space. In this paper the
          constitutive relations are presented in a form of Cl3,0
          algebra which describes the vector space by three basis
          vectors {σ1, σ2, σ3}
          that satisfy Pauli commutation relations. It is shown that the
          classification of electromagnetic wave propagation phenomena
          with the help of constitutive relations in this case comes
          from the structure of Cl3,0 itself.
          Concrete expressions for classical constitutive relations are
          presented including electromagnetic wave propagation in a
          moving dielectric.
          
         Keywords:
        electrodynamics, constitutive relations, light propagation in
        anisotropic media, geometric algebra, Clifford algebra
        
PACS: 03.50.D, 42.25.B,
        77.22.C, 78.20.E
      
 
      
      
        
        
          
          
          
          SANDAROS RYŠIAI KLASIKINĖJE
            OPTIKOJE GEOMETRINĖS ALGEBROS POŽIŪRIU
        
      
        
        
        
        
        
        Adolfas Dargys
        Fizinių ir technologijos mokslų centro Puslaidininkių fizikos
          institutas, Vilnius, Lietuva
        
      
      Kad Maxwello lygčių sistema būtų
        uždara, ją reikia papildyti sandaros ryšiais, nusakančiais
        terpės, kurioje sklinda elektromagnetinė banga, savybes ir
        susiejančiais pirminius elektromagnetinius laukus su antriniais.
        Straipsnyje pateikti sandaros ryšiai užrašyti Cl3,0
        algebros, vadinamosios Cliffordo algebra, kalba. Nuo
        standartinio vektorinio skaičiavimo, plačiai taikomo
        elektrodinamikoje, ši algebra skiriasi tuo, kad Euklido erdvę
        sudarantys trys ortai joje tenkina tuos pačius komutacinius
        sąryšius kaip ir Paulio matricos. Kadangi Cl3,0
        algebra yra izomorfiška reliatyvistinės Cl1,3
        algebros lyginiam poalgebriui, manoma, kad Cl3,0
        algebros matematinis aparatas teisingiau aprašo trimatę Euklido
        erdvę nei daugiau kaip prieš 100 metų J.W. Gibbso ir O.
        Heaviside pasiūlyti ortai {i, j, k} ir su
        jais susietas vektorinis skaičiavimas. Be to, Cl1,3
        ir Cl3,0 algebros aiškiau suskirsto
        elektrodinamiką į reliatyvistinę ir klasikinę. Straipsnyje
        nagrinėjami sandaros ryšiai klasikinės elektrodinamikos
        požiūriu, kai aplinkos atsakas yra tiesinis sužadinimo atžvilgiu
        ir be vėlinimo. Parodyta, kad tokiu atveju elektromagnetinių
        bangų sklidimo savybių klasifikacija išeina iš pačios Cl3,0
        algebros vidinės sandaros ir todėl sandaros ryšiams suformuluoti
        nėra reikalingi jokie kiti papildomi apribojimai. Pateiktos
        konkrečios sandaros sąryšių matematinės išraiškos Cl3,0
        algebros kalba, taip pat jų pagalba išspręstas elektromagnetinės
        bangos sklidimo judančiame dielektrike uždavinys.
      
      
      References
/
          Nuorodos
        
        [1] M. Born and E. Wolf,
        
Principles of Optics (Pergamon Press, Oxford, 1968), 
        
          http://www.amazon.co.uk/372/dp/B0006BNJ2E/
        [2] E.J. Post, 
Formal Structure of Electromagnetics
        (North Holland Publishing Company, Amsterdam, 1962), 
        
http://www.amazon.co.uk/Formal-Structure-Electromagnetics-Physics-E-J/dp/0486654273/
        [3] F.W. Hehl and Y.N. Obukhov, 
Foundations of Classical
          Electrodynamics: Charge, Flux and Metric (Birkhäuser,
        Boston, 2003), 
        
          http://dx.doi.org/10.1007/978-1-4612-0051-2
        [4] T.G. Mackay and A. Lakhtakia, 
Electromagnetic Anisotropy
          and Bianisotropy: A Field Guide (World Scientific
        Publishing, Singapore, 2010), 
        
          http:/dx.doi.org/10.1142/7515
        [5] A. Karlsson and G. Kristensson, Constitutive relations,
        dissipation, and reciprocity for the Maxwell equations in the
        time domain, JEWA 
6, 537–551 (1992), 
        
          http://dx.doi.org/10.1163/156939392X01309
        [6] P. Hillion, Constitutive relations and Clifford algebra in
        electromagnetism, Adv. Appl. Clifford Alg. 
5(2), 141–158
        (1995) 
        [7] B.D.H. Tellegen, The gyrator, a new electric network
        element, Philips Res. Rep. 
3, 81–101 (1948) 
        [8] V.V. Varlamov, Universal coverings of orthogonal groups,
        Adv. Appl. Clifford Alg. 
14(1), 81–168 (2004), 
        
          http://dx.doi.org/10.1007/s00006-004-0006-4
        [9] B. Jancewicz, 
Multivectors and Clifford Algebra in
          Electrodynamics (World Scientific, Singapore, 1988), 
        
          http://dx.doi.org/10.1142/0419
        [10] W. Baylis, 
Electrodynamics: A Modern Geometric Approach
        (Birkhäuser, Boston, 1999), 
        
          http://www.springer.com/us/book/9780817640255
        [11] C. Doran and A. Lasenby, 
Geometric Algebra for
          Physicists (Cambridge University Press, Cambridge, 2003),
        
        
          http://dx.doi.org/10.1017/CBO9780511807497
        [12] J.W. Arthur, 
Understanding Geometric Algebra for
          Electromagnetic Theory (John Wiley & Sons, Hoboken,
        New Jersey, 2011), 
        
          http://dx.doi.org/10.1002/9781118078549
        [13] S.A. Matos, M.A. Ribeiro, and C.R. Paiva, Anisotropy
        without tensors: A novel approach using geometric algebra, Opt.
        Express 
15(23), 15175–15182 (2007), 
        
          http://dx.doi.org/10.1364/OE.15.015175
        [14] P. Puska, Covariant isotropic constitutive relations in
        Clifford’s geometric algebra, PIER 
32, 413–428 (2001), 
        
          http://dx.doi.org/10.2528/PIER00080116
        [15] T. Ivezić, The constitutive relations and the
        magnetoelectric effect for a moving medium, arXiv:1204.0114v1
        [physics:gen-ph], 1–18 (2012), 
        
http://arxiv.org/abs/1204.0114v1
        [16] D. Hestenes, 
New Foundations for Classical Mechanics,
        2nd ed. (Kluwer Academic Publishers, 2002), 
        
          http://dx.doi.org/10.1007/0-306-47122-1
        [17] F.W. Hehl and Y.N. Obukhov, A gentle introduction to the
        foundations of classical electrodynamics: The meaning of
        excitations (D, H) and the field strengths (E, B), arXiv:
        physics/0005084v2 [physics.class-ph], 1–22 (2000), 
        
http://arxiv.org/abs/physics/0005084v2
        [18] J.W. Gibbs, 
Vector Analysis (Yale University, 1901)
        [19] A. Macdonald, 
Vector and Geometric Calculus (Luther
        College, Decorah, USA, 2012), 
        
http://www.amazon.co.uk/Vector-Geometric-Calculus-Alan-Macdonald/dp/1480132454/
        [20] M. Fiebig, Revival of the magnetoelectric effect, J. Phys.
        D 
38, R123–R152 (2005), 
        
          http://dx.doi.org/10.1088/0022-3727/38/8/R01
        [21] L.D. Landau and E.M. Lifshitz, 
Electrodynamics of
          Continuous Media, Ch. 9 (Pergamon, Oxford, 1984), 
        
          http://www.amazon.co.uk/372/dp/0750626348/
        [22] A. Dargys, Constitutive relations in optics in terms of
        geometric algebra, Opt. Commun. 
354, 259-265 (2015)' 
        
          http://dx.doi.org/10.1016/j.optcom.2015.06.004
        [23] P. Lounesto, 
Clifford Algebras and Spinors
        (Cambridge University Press, Cambridge, 1997), 
        
http://www.cambridge.org/academic/subjects/mathematics/algebra/clifford-algebras-and-spinors-2nd-edition