[PDF]    http://dx.doi.org/10.3952/physics.v55i2.3100

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 100109 (2015)


NONLINEAR PROPERTIES OF SILVER NANOPARTICLES EXPLORED BY A FEMTOSECOND Z-SCAN TECHNIQUE
Aleksandr Alesenkova, Jurgis Pilipavičiusb, Aldona Beganskienėb, Romualdas Sirutkaitisc, and Valdas Sirutkaitisa
aLaser Research Center, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: aleksandr.alesenkov@ff.vu.lt
bDepartment of Inorganic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
cInstitute of Biochemistry, Vilnius University, Mokslininkų 12, LT-08662 Vilnius, Lithuania

Received 10 February 2015; revised 22 April 2015; accepted 15 June 2015

In this report we present results of linear and nonlinear optical properties of colloidal material consisting of triangle silver nanoparticles in distilled water. The nonlinear optical properties of the material were investigated by a Z-scan technique using femtosecond laser pulses with tunable wavelength. Nanoparticle suspension showed distinct spectra with absorption lines, emerging due to the plasmonic properties of the silver nanoparticles. Surface plasmon resonance peak change over a wide range of wavelengths from 400 to almost 1100 nm was observed when the size of silver nanoparticles varied from 20 to 150 nm. In the samples different nonlinear effects such as saturable absorption, two photon absorption and self-focusing were observed when the femtosecond pulse intensity was changed from 1 up to 100 GW/cm2.
Keywords: Z-scan, silver nanoprism, two-photon absorption
PACS: 42.65.Jx

SIDABRO NANODALELIŲ OPTINIAI NETIESIŠKUMAI, IŠTIRTI NAUDOJANT Z SKENAVIMO METODIKĄ SU FEMTOSEKUNDINIAIS LAZERINIAIS IMPULSAIS

Aleksandr Alesenkova, Jurgis Pilipavičiusb, Aldona Beganskienėb, Romualdas Sirutkaitisc, Valdas Sirutkaitisa
aVilniaus universiteto Lazerinių tyrimų centras, Vilnius, Lietuva
bVilniaus universiteto Neorganinės chemijos katedra, Vilnius, Lietuva
cVilniaus universiteto Biochemijos institutas, Vilnius, Lietuva

Straipsnyje pristatomos nanokompozitinės medžiagos, susidedančios iš sidabro nanoprizmių, disperguotų distiliuotame vandenyje, tyrimų rezultatai. Suspensija buvo pagaminta dviejų žingsnių cheminiu procesu naudojant užkratą. Nanodalelių sugerties spektras parodė išreikštas plazmonines dalelių savybes. Didėjant prizmių kraštinei nuo 20 iki 150 nm, sugerties smailė slinko link ilgesnių bangos ilgių spektriniame diapazone tarp 400 ir 1100 nm. Žadinant nanodaleles didelio intensyvumo femtosekundiniais lazeriniais impulsais infraraudonojoje spektro dalyje (1200–1400 nm), medžiagoje buvo stebėti netiesiniai optiniai reiškiniai, pavyzdžiui, praskaidrėjimas, dvifotonė sugertis ir fokusavimas.

References / Nuorodos

[1] R. Narayanan and M.A. El-Sayed, Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability, J. Phys. Chem. B 109(26), 12663–12676 (2005),
http://dx.doi.org/10.1021/jp051066p
[2] F. Hache, D. Ricard, and C. Flytzanis, Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects, J. Opt. Soc. Am. B 3(12), 1647–1655 (1986),
http://dx.doi.org/10.1364/JOSAB.3.001647
[3] K.L. Kelly, C. Eduardo, Z. Lin Lin, E. Coronado, L.L. Zhao, and G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, J. Phys. Chem. B 107, 668–677 (2003),
http://dx.doi.org/10.1021/jp026731y
[4] R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses, Opt. Mater. Express 3(10), 1674–1686 (2013),
http://dx.doi.org/10.1364/OME.3.001674
[5] M. Sheik-bahae, A.A. Said, and E.W. Van Stryland, High-sensitivity, single-beam n2 measurements, Opt. Lett. 14(17), 955–957 (1989),
http://dx.doi.org/10.1364/OL.14.000955
[6] M. Chandra, S.S. Indi, and P.K. Das, Depolarized hyper-Rayleigh scattering from copper nanoparticles, J. Phys. Chem. C 111(28), 10652–10656 (2007),
http://dx.doi.org/10.1021/jp071847l
[7] S. Eustis and M.A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes, Chem. Soc. Rev. 35(3), 209–217 (2005),
http://dx.doi.org/10.1039/b514191e
[8] R.F. Haglund, R.H. Magruder, K. Becker, R.A. Zuhr, J.E. Wittig, and L. Yang, Picosecond nonlinear optical response of a Cu:silica nanocluster composite, Opt. Lett. 18(5), 373–375 (1993),
http://dx.doi.org/10.1364/OL.18.000373
[9] K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A.J. Ikushima, T. Tokizaki, and A. Nakamura, Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles, J. Opt. Soc. Am. B 11(7), 1236–1243 (1994),
http://dx.doi.org/10.1364/JOSAB.11.001236
[10] T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, Subpicosecond time response of third‐order optical nonlinearity of small copper particles in glass, Appl. Phys. Lett. 65(8), 941–943 (1994),
http://dx.doi.org/10.1063/1.112155
[11] Y. Hong, Y.-M. Huh, S.S. Yoon, and J. Yang, Nanobiosensors based on localized surface plasmon resonance for biomarker detection, J. Nanomater. 2012, 759830 (2012),
http://dx.doi.org/10.1155/2012/759830
[12] I.H. El-Sayed, X. Huang, and M.A. El-Sayed, Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer, Nano Lett. 5(5), 829–834 (2005),
http://dx.doi.org/10.1021/nl050074e
[13] S. Eustis and M. El-Sayed, Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study, J. Phys. Chem. B 109(34), 16350–16356 (2005),
http://dx.doi.org/10.1021/jp052951a
[14] T.K. Sau and C.J. Murphy, Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution, JACS 126(28), 8648–8649 (2004),
http://dx.doi.org/10.1021/ja047846d
[15] J.E. Millstone, S. Park, K.L. Shuford, L. Qin, G.C. Schatz, and C.A. Mirkin, Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms, JACS 127(15), 5312–5313 (2005),
http://dx.doi.org/10.1021/ja043245a
[16] B.D. Busbee, S.O. Obare, and C.J. Murphy, An improved synthesis of high-aspect-ratio gold nanorods, Adv. Mater. 15(5), 414–416 (2003),
http://dx.doi.org/10.1002/adma.200390095
[17] T.S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, and M.A. El-Sayed, Shape-controlled synthesis of colloidal platinum nanoparticles, Science 272(5270), 1924–1925 (1996),
http://dx.doi.org/10.1126/science.272.5270.1924
[18] K.K. Caswell, C.M. Bender, and C.J. Murphy, Seedless, surfactantless wet chemical synthesis of silver nanowires, Nano Lett. 3(5), 667–669 (2003),
http://dx.doi.org/10.1021/nl0341178
[19] N.R. Jana, L. Gearheart, and C.J. Murphy, Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chem. Commun. 1(7), 617–618 (2001),
http://dx.doi.org/10.1039/B100521I
[20] Y. Sun, B. Mayers, and Y. Xia, Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process, Nano Lett. 3(5), 675–679 (2003),
http://dx.doi.org/10.1021/nl034140t
[21] S. Chen and D.L. Carroll, Synthesis and characterization of truncated triangular silver nanoplates, Nano Lett. 2(9), 1003–1007 (2002),
http://dx.doi.org/10.1021/nl025674h
[22] M.A. Correa-Duarte, J. Pérez-Juste, A. Sánchez-Iglesias, M. Giersig, and L.M. Liz-Marzán, Aligning Au nanorods by using carbon nanotubes as templates, Angew. Chem. Int. Ed. 44(28), 4375–4378 (2005),
http://dx.doi.org/10.1002/anie.200500581
[23] R. Jin, Y. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, and J.G. Zheng, Photoinduced conversion of silver nanospheres to nanoprisms, Science 294(5548), 1901–1903 (2001),
http://dx.doi.org/10.1126/science.1066541
[24] J.E. Millstone, G.S. Métraux, and C.A. Mirkin, Controlling the edge length of gold nanoprisms via a seed-mediated approach, Adv. Funct. Mater. 16(9), 1209–1214 (2006),
http://dx.doi.org/10.1002/adfm.200600066
[25] M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, and E.W.V. Stryland, Sensitive measurement of optical nonlinearities using a single beam, IEEE J. Quantum Electron. 26(4), 760–769 (1990),
http://dx.doi.org/10.1109/3.53394
[26] P.B. Chapple, J. Staromlynska, J.A. Hermann, and T.J. Mckay, Single-beam Z-scan: measurement techniques and analysis, J. Nonlinear Opt. Phys. Mater. 6(3), 251–293 (1997),
http://dx.doi.org/10.1142/S0218863597000204
[27] T. Xia, D.J. Hagan, M. Sheik-Bahae, and E.W. Van Stryland, Eclipsing Z-scan measurement of λ/104 wave-front distortion, Opt. Lett. 19(5), 317–319 (1994),
http://dx.doi.org/10.1364/OL.19.000317
[28] E.W. Van Stryland and M. Sheik-Bahae, in: Characterization Techniques and Tabulations for Organic Nonlinear Materials, eds. M.G. Kuzyk and C.W. Dirk (Marcel Dekker, 1998) pp. 655–692,
http://www.optics.unm.edu/sbahae/publications/z-scan.pdf
[29] M. Sheik-Bahae and M.P. Hasselbeck, in: OSA Handbook of Optics, Vol. 4 (McGraw-Hill, 2001) pp. 17.13–17.38,
http://www.optics.unm.edu/sbahae/publications/OSA-Handbook%20of%20Optics-IV-Ch17.pdf
[30] N. Okada, Y. Hamanaka, A. Nakamura, I. Pastoriza-Santos, and L.M. Liz-Marzán, Linear and nonlinear optical response of silver nanoprisms: local electric fields of dipole and quadrupole plasmon resonances, J. Phys. Chem. B 108(26), 8751–8755 (2004),
http://dx.doi.org/10.1021/jp048193q
[31] L.J. Sherry, R. Jin, C.A. Mirkin, G.C. Schatz, and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms, Nano Lett. 6(9), 2060–2065 (2006),
http://dx.doi.org/10.1021/nl061286u
[32] U. Gurudas, E. Brooks, D.M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses, J. Appl. Phys. 104(7), 073107–073108 (2008),
http://dx.doi.org/10.1063/1.2990056
[33] F. Guang-Hua, Q. Shi-Liang, G. Zhong-Yi, W. Qiang, and L. Zhong-Guo, Size-dependent nonlinear absorption and refraction of Ag nanoparticles excited by femtosecond lasers, Chin. Phys. B 21(4), 047804 (2012),
http://dx.doi.org/10.1088/1674-1056/21/4/047804
[34] T. Cesca, P. Calvelli, G. Battaglin, P. Mazzoldi, and G. Mattei, Nonlinear optical response of gold–silver nanoplanets, Radiat. Eff. Defect. Solids 167(7), 520–526 (2012),
http://dx.doi.org/10.1080/10420150.2012.680458
[35] X. Wang, F. Nan, S. Liang, L. Zhou, and Q. Wang, Optical properties of silver nanoplates synthesized by photoinduced method, Wuhan Univ. J. Nat. Sci. 18(3), 201–206 (2013),
http://dx.doi.org/10.1007/s11859-013-0915-y
[36] D. Rativa, R.E. de Araujo, and A.S. Gomes, One photon nonresonant high-order nonlinear optical properties of silver nanoparticles in aqueous solution, Opt. Express 16(23), 19244–19252 (2008),
http://dx.doi.org/10.1364/OE.16.019244
[37] Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal–glass composites, J. Opt. Soc. Am. B 20(6), 1227–1232 (2003),
http://dx.doi.org/10.1364/JOSAB.20.001227
[38] G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses, J. Appl. Phys. 109(2), 023102 (2011),
http://dx.doi.org/10.1063/1.3533738
[39] P. Lama, A. Suslov, A.D. Walser, and R. Dorsinville, Plasmon assisted enhanced nonlinear refraction of monodispersed silver nanoparticles and their tunability, Opt. Express 22(11), 14014–14021 (2014),
http://dx.doi.org/10.1364/OE.22.014014
[40] I. Pastoriza-Santos and L.M. Liz-Marzán, Synthesis of silver nanoprisms in DMF, Nano Lett. 2(8), 903–905 (2002),
http://dx.doi.org/10.1021/nl025638i
[41] B.-H. Yu, D.-L. Zhang, Y.-B. Li, and Q.-B. Tang, Nonlinear optical behaviors in a silver nanoparticle array at different wavelengths, Chin. Phys. B 22(1), 014212 (2013),
http://dx.doi.org/10.1088/1674-1056/22/1/014212