Received 10 February 2015; revised 22 April 2015; accepted 15 June
      2015
      
      
SIDABRO NANODALELIŲ OPTINIAI
            NETIESIŠKUMAI, IŠTIRTI NAUDOJANT Z SKENAVIMO METODIKĄ SU
            FEMTOSEKUNDINIAIS LAZERINIAIS IMPULSAIS
        
      Straipsnyje pristatomos
        nanokompozitinės medžiagos, susidedančios iš sidabro
        nanoprizmių, disperguotų distiliuotame vandenyje, tyrimų
        rezultatai. Suspensija buvo pagaminta dviejų žingsnių cheminiu
        procesu naudojant užkratą. Nanodalelių sugerties spektras parodė
        išreikštas plazmonines dalelių savybes. Didėjant prizmių
        kraštinei nuo 20 iki 150 nm, sugerties smailė slinko link
        ilgesnių bangos ilgių spektriniame diapazone tarp 400 ir 1100
        nm. Žadinant nanodaleles didelio intensyvumo femtosekundiniais
        lazeriniais impulsais infraraudonojoje spektro dalyje (1200–1400
        nm), medžiagoje buvo stebėti netiesiniai optiniai reiškiniai,
        pavyzdžiui, praskaidrėjimas, dvifotonė sugertis ir fokusavimas.
      References
/
          Nuorodos
        
        [1] R. Narayanan and
        M.A. El-Sayed, Catalysis with transition metal nanoparticles in
        colloidal solution: nanoparticle shape dependence and stability,
        J. Phys. Chem. B 
109(26), 12663–12676 (2005), 
        
http://dx.doi.org/10.1021/jp051066p
        [2] F. Hache, D. Ricard, and C. Flytzanis, Optical
        nonlinearities of small metal particles: surface-mediated
        resonance and quantum size effects, J. Opt. Soc. Am. B 
3(12),
        1647–1655 (1986), 
        
http://dx.doi.org/10.1364/JOSAB.3.001647
        [3] K.L. Kelly, C. Eduardo, Z. Lin Lin, E. Coronado, L.L. Zhao,
        and G.C. Schatz, The optical properties of metal nanoparticles:
        the influence of size, shape, and dielectric environment, J.
        Phys. Chem. B 
107, 668–677 (2003), 
        
http://dx.doi.org/10.1021/jp026731y
        [4] R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis,
        Nano-groove and 3D fabrication by controlled avalanche using
        femtosecond laser pulses, Opt. Mater. Express 
3(10),
        1674–1686 (2013), 
        
http://dx.doi.org/10.1364/OME.3.001674
        [5] M. Sheik-bahae, A.A. Said, and E.W. Van Stryland,
        High-sensitivity, single-beam n2 measurements, Opt. Lett. 
          14(17), 955–957 (1989), 
        
http://dx.doi.org/10.1364/OL.14.000955
        [6] M. Chandra, S.S. Indi, and P.K. Das, Depolarized
        hyper-Rayleigh scattering from copper nanoparticles, J. Phys.
        Chem. C 
111(28), 10652–10656 (2007), 
        
http://dx.doi.org/10.1021/jp071847l
        [7] S. Eustis and M.A. El-Sayed, Why gold nanoparticles are more
        precious than pretty gold: Noble metal surface plasmon resonance
        and its enhancement of the radiative and nonradiative properties
        of nanocrystals of different shapes, Chem. Soc. Rev. 
35(3),
        209–217 (2005), 
        
http://dx.doi.org/10.1039/b514191e
        [8] R.F. Haglund, R.H. Magruder, K. Becker, R.A. Zuhr, J.E.
        Wittig, and L. Yang, Picosecond nonlinear optical response of a
        Cu:silica nanocluster composite, Opt. Lett. 
18(5),
        373–375 (1993), 
        
http://dx.doi.org/10.1364/OL.18.000373
        [9] K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara,
        A.J. Ikushima, T. Tokizaki, and A. Nakamura, Optical
        nonlinearities of a high concentration of small metal particles
        dispersed in glass: copper and silver particles, J. Opt. Soc.
        Am. B 
11(7), 1236–1243 (1994), 
        
http://dx.doi.org/10.1364/JOSAB.11.001236
        [10] T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H.
        Tanji, and Y. Asahara, Subpicosecond time response of
        third‐order optical nonlinearity of small copper particles in
        glass, Appl. Phys. Lett. 
65(8), 941–943 (1994), 
        
http://dx.doi.org/10.1063/1.112155
        [11] Y. Hong, Y.-M. Huh, S.S. Yoon, and J. Yang, Nanobiosensors
        based on localized surface plasmon resonance for biomarker
        detection, J. Nanomater. 
2012, 759830 (2012), 
        
http://dx.doi.org/10.1155/2012/759830
        [12] I.H. El-Sayed, X. Huang, and M.A. El-Sayed, Surface plasmon
        resonance scattering and absorption of anti-EGFR antibody
        conjugated gold nanoparticles in cancer diagnostics:
        applications in oral cancer, Nano Lett. 
5(5), 829–834
        (2005), 
        
http://dx.doi.org/10.1021/nl050074e
        [13] S. Eustis and M. El-Sayed, Aspect ratio dependence of the
        enhanced fluorescence intensity of gold nanorods: experimental
        and simulation study, J. Phys. Chem. B 
109(34),
        16350–16356 (2005), 
        
http://dx.doi.org/10.1021/jp052951a
        [14] T.K. Sau and C.J. Murphy, Room temperature, high-yield
        synthesis of multiple shapes of gold nanoparticles in aqueous
        solution, JACS 
126(28), 8648–8649 (2004), 
        
http://dx.doi.org/10.1021/ja047846d
        [15] J.E. Millstone, S. Park, K.L. Shuford, L. Qin, G.C. Schatz,
        and C.A. Mirkin, Observation of a quadrupole plasmon mode for a
        colloidal solution of gold nanoprisms, JACS 
127(15),
        5312–5313 (2005), 
        
http://dx.doi.org/10.1021/ja043245a
        [16] B.D. Busbee, S.O. Obare, and C.J. Murphy, An improved
        synthesis of high-aspect-ratio gold nanorods, Adv. Mater. 
15(5),
        414–416 (2003), 
        
http://dx.doi.org/10.1002/adma.200390095
        [17] T.S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, and M.A.
        El-Sayed, Shape-controlled synthesis of colloidal platinum
        nanoparticles, Science 
272(5270), 1924–1925 (1996), 
        
http://dx.doi.org/10.1126/science.272.5270.1924
        [18] K.K. Caswell, C.M. Bender, and C.J. Murphy, Seedless,
        surfactantless wet chemical synthesis of silver nanowires, Nano
        Lett. 
3(5), 667–669 (2003), 
        
http://dx.doi.org/10.1021/nl0341178
        [19] N.R. Jana, L. Gearheart, and C.J. Murphy, Wet chemical
        synthesis of silver nanorods and nanowires of controllable
        aspect ratio, Chem. Commun. 
1(7), 617–618 (2001), 
        
http://dx.doi.org/10.1039/B100521I
        [20] Y. Sun, B. Mayers, and Y. Xia, Transformation of silver
        nanospheres into nanobelts and triangular nanoplates through a
        thermal process, Nano Lett. 
3(5), 675–679 (2003), 
        
http://dx.doi.org/10.1021/nl034140t
        [21] S. Chen and D.L. Carroll, Synthesis and characterization of
        truncated triangular silver nanoplates, Nano Lett. 
2(9),
        1003–1007 (2002), 
        
http://dx.doi.org/10.1021/nl025674h
        [22] M.A. Correa-Duarte, J. Pérez-Juste, A. Sánchez-Iglesias, M.
        Giersig, and L.M. Liz-Marzán, Aligning Au nanorods by using
        carbon nanotubes as templates, Angew. Chem. Int. Ed. 
44(28),
        4375–4378 (2005), 
        
http://dx.doi.org/10.1002/anie.200500581
        [23] R. Jin, Y. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, and
        J.G. Zheng, Photoinduced conversion of silver nanospheres to
        nanoprisms, Science 
294(5548), 1901–1903 (2001), 
        
http://dx.doi.org/10.1126/science.1066541
        [24] J.E. Millstone, G.S. Métraux, and C.A. Mirkin, Controlling
        the edge length of gold nanoprisms via a seed-mediated approach,
        Adv. Funct. Mater. 
16(9), 1209–1214 (2006), 
        
http://dx.doi.org/10.1002/adfm.200600066
        [25] M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, and
        E.W.V. Stryland, Sensitive measurement of optical nonlinearities
        using a single beam, IEEE J. Quantum Electron. 
26(4),
        760–769 (1990), 
        
http://dx.doi.org/10.1109/3.53394
        [26] P.B. Chapple, J. Staromlynska, J.A. Hermann, and T.J.
        Mckay, Single-beam Z-scan: measurement techniques and analysis,
        J. Nonlinear Opt. Phys. Mater. 
6(3), 251–293 (1997), 
        
http://dx.doi.org/10.1142/S0218863597000204
        [27] T. Xia, D.J. Hagan, M. Sheik-Bahae, and E.W. Van Stryland,
        Eclipsing Z-scan measurement of λ/104 wave-front distortion,
        Opt. Lett. 
19(5), 317–319 (1994), 
        
http://dx.doi.org/10.1364/OL.19.000317
        [28] E.W. Van Stryland and M. Sheik-Bahae, in: 
Characterization
          Techniques and Tabulations for Organic Nonlinear Materials,
        eds. M.G. Kuzyk and C.W. Dirk (Marcel Dekker, 1998) pp. 655–692,
        
        
http://www.optics.unm.edu/sbahae/publications/z-scan.pdf
        [29] M. Sheik-Bahae and M.P. Hasselbeck, in: 
OSA Handbook of
          Optics, Vol. 4 (McGraw-Hill, 2001) pp. 17.13–17.38, 
        
http://www.optics.unm.edu/sbahae/publications/OSA-Handbook%20of%20Optics-IV-Ch17.pdf
        [30] N. Okada, Y. Hamanaka, A. Nakamura, I. Pastoriza-Santos,
        and L.M. Liz-Marzán, Linear and nonlinear optical response of
        silver nanoprisms: local electric fields of dipole and
        quadrupole plasmon resonances, J. Phys. Chem. B 
108(26),
        8751–8755 (2004), 
        
http://dx.doi.org/10.1021/jp048193q
        [31] L.J. Sherry, R. Jin, C.A. Mirkin, G.C. Schatz, and R.P. Van
        Duyne, Localized surface plasmon resonance spectroscopy of
        single silver triangular nanoprisms, Nano Lett. 
6(9),
        2060–2065 (2006), 
        
http://dx.doi.org/10.1021/nl061286u
        [32] U. Gurudas, E. Brooks, D.M. Bubb, S. Heiroth, T. Lippert,
        and A. Wokaun, Saturable and reverse saturable absorption in
        silver nanodots at 532 nm using picosecond laser pulses, J.
        Appl. Phys. 
104(7), 073107–073108 (2008), 
        
http://dx.doi.org/10.1063/1.2990056
        [33] F. Guang-Hua, Q. Shi-Liang, G. Zhong-Yi, W. Qiang, and L.
        Zhong-Guo, Size-dependent nonlinear absorption and refraction of
        Ag nanoparticles excited by femtosecond lasers, Chin. Phys. B 
          21(4), 047804 (2012), 
        
http://dx.doi.org/10.1088/1674-1056/21/4/047804
        [34] T. Cesca, P. Calvelli, G. Battaglin, P. Mazzoldi, and G.
        Mattei, Nonlinear optical response of gold–silver nanoplanets,
        Radiat. Eff. Defect. Solids 
167(7), 520–526 (2012), 
        
http://dx.doi.org/10.1080/10420150.2012.680458
        [35] X. Wang, F. Nan, S. Liang, L. Zhou, and Q. Wang, Optical
        properties of silver nanoplates synthesized by photoinduced
        method, Wuhan Univ. J. Nat. Sci. 
18(3), 201–206 (2013),
        
        
          http://dx.doi.org/10.1007/s11859-013-0915-y
        [36] D. Rativa, R.E. de Araujo, and A.S. Gomes, One photon
        nonresonant high-order nonlinear optical properties of silver
        nanoparticles in aqueous solution, Opt. Express 
16(23),
        19244–19252 (2008), 
        
http://dx.doi.org/10.1364/OE.16.019244
        [37] Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi,
        Dispersion curves of complex third-order optical
        susceptibilities around the surface plasmon resonance in Ag
        nanocrystal–glass composites, J. Opt. Soc. Am. B 
20(6),
        1227–1232 (2003), 
        
http://dx.doi.org/10.1364/JOSAB.20.001227
        [38] G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, Pd
        nanoparticles formation by femtosecond laser irradiation and the
        nonlinear optical properties at 532 nm using nanosecond laser
        pulses, J. Appl. Phys. 
109(2), 023102 (2011), 
        
http://dx.doi.org/10.1063/1.3533738
        [39] P. Lama, A. Suslov, A.D. Walser, and R. Dorsinville,
        Plasmon assisted enhanced nonlinear refraction of monodispersed
        silver nanoparticles and their tunability, Opt. Express 
22(11),
        14014–14021 (2014), 
        
http://dx.doi.org/10.1364/OE.22.014014
        [40] I. Pastoriza-Santos and L.M. Liz-Marzán, Synthesis of
        silver nanoprisms in DMF, Nano Lett. 
2(8), 903–905
        (2002), 
        
http://dx.doi.org/10.1021/nl025638i
        [41] B.-H. Yu, D.-L. Zhang, Y.-B. Li, and Q.-B. Tang, Nonlinear
        optical behaviors in a silver nanoparticle array at different
        wavelengths, Chin. Phys. B 
22(1), 014212 (2013), 
        
http://dx.doi.org/10.1088/1674-1056/22/1/014212