Received 31 March 2015; revised 4 June 2015; accepted 4 June 2015
      
      
Taikant kvazireliatyvistinį
        Hartrio ir Foko artinį, ištirti volframo jonai nuo W38+
        iki W43+. Atlikti skaičiavimai įtraukiant
        koreliacinius efektus konfigūracijų sąveikos artėjime, naudota
        transformuotų radialiųjų orbitalių bazė. Suskaičiuotos
        pagrindinių konfigūracijų 4s24pN
        bei sužadintų konfigūracijų 4s24pN–14d
        ir 4s4pN+1 lygmenų energijos. Gauti rezultatai
        palyginti su esamais eksperimentiniais ir teoriniais duomenimis.
        Jonams W42+, W41+, W40+ ir W38+
        visi tiriamųjų konfigūracijų energijos lygmenų spektrai gauti
        pirmą kartą. Jonų W43+ ir W39+ energijos
        lygmenys nustatyti didesniu tikslumu, palyginti su kitų autorių
        duomenimis.
      
      References
          / Nuorodos
          
         [1] J. Reader,
        Spectral data for fusion energy: from 
W to 
W,
        Phys. Scr. 
T134, 014023 (2009), 
        
http://dx.doi.org/10.1088/0031-8949/2009/T134/014023
        [2] C. Skinner, Atomic physics in the quest for fusion energy
        and ITER, Phys. Scr. 
T134, 014022 (2009), 
        
http://dx.doi.org/10.1088/0031-8949/2009/T134/014022
        [3] A.E. Kramida and T. Shirai, Energy levels and spectral lines
        of tungsten, W III through W LXXIV, At. Data Nucl. Data Tables 
95,
        305–474 (2009), 
        
http://dx.doi.org/10.1016/j.adt.2008.12.002
        [4] A.E. Kramida, Recent progress in spectroscopy of tungsten,
        Can. J. Phys. 
89, 551–570 (2011), 
        
http://dx.doi.org/10.1139/p11-045
        [5] P. Bogdanovich, R. Karpuškienė, and R. Kisielius,
        Quasirelativistic calculation of 4s
24p
5,
        4s
24p
44d and 4s4p
6
        configuration spectroscopic parameters for the W
39+
        ion, Phys. Scripta 
90, 035401 (2015), 
        
http://dx.doi.org/10.1088/0031-8949/90/3/035401
        [6] K.B. Fournier, Atomic data and spectral line intensities for
        highly ionized tungsten (Co-like W
47+ to Rb-like W
37+)
        in a high-temperature, low-density plasma, At. Data Nucl. Data
        Tables 
68, 1–48 (1998), 
        
http://dx.doi.org/10.1006/adnd.1997.0756
        [7] M. Klapisch, J.L. Schwob, B. Fraenkel, and J. Oreg, The
        1s–3p K
β-like x-ray spectrum of highly ionized iron, J.
        Opt. Soc. Am 
67, 148–155 (1977), 
        
http://dx.doi.org/10.1364/JOSA.67.000148
        [8] P. Quinet, A theoretical survey of atomic structure and
        forbidden transitions in the 4p
k and 4d
k
        ground configurations of tungsten ions W
29+ through W
43+,
        J. Phys. B 
45, 025003 (2012), 
        
http://dx.doi.org/10.1088/0953-4075/45/2/025003
        [9] P. Quinet, É. Biémont, P. Palmeri, and E. Träbert,
        Multiconfiguration Dirac–Fock wavelengths and transition rates
        in the X-ray spectra of highly charged Ga-like ions from Yb
39+
        to U
61+, At. Data Nucl. Data Tables 
93,
        167–182 (2007), 
        
http://dx.doi.org/10.1016/j.adt.2006.09.001
        [10] F. Hu, C. Wang, J. Yang, G. Jiang, and L. Hao,
        Multiconfiguration Dirac–Fock calculations of transition
        probabilities of some tungsten ions, Phys. Scripta 
84,
        015302 (2011), 
        
http://dx.doi.org/10.1088/0031-8949/84/01/015302
        [11] L.-H. Hao and X.-P. Kang, Energy levels and spectral lines
        in the X-ray spectra of highly charged W XLIV, Eur. Phys. J. D 
68,
        203 (2014), 
        
http://dx.doi.org/10.1140/epjd/e2014-50056-0
        [12] J. Clementson, P. Beiersdorfer, T. Brage, and M.F. Gu,
        Atomic data and theoretical X-ray spectra of Ge-like through
        V-like W ions, At. Data Nucl. Data Tables 
100, 577–649
        (2014), 
        
http://dx.doi.org/10.1016/j.adt.2013.07.002
        [13] R. Karpuškienė, O. Rancova, and P. Bogdanovich, An 
ab
          initio study of the spectral properties of W II, J. Phys.
        B 43, 085002 (2010), 
        
http://dx.doi.org/10.1088/0953-4075/43/8/085002
        [14] P. Bogdanovich and R. Kisielius, Theoretical energy level
        spectra and transition data for 4p
64d, 4p
64f
        and 4p
54d
2 configurations of W
37+
        ion, At. Data Nucl. Data Tables 
98, 557–565 (2012), 
        
http://dx.doi.org/10.1016/j.adt.2011.11.004
        [15] P. Bogdanovich and R. Kisielius, Theoretical energy level
        spectra and transition data for 4p
64d
2, 4p
64d4f,
        and 4p
54d
3 configurations of W
36+,
        At. Data Nucl. Data Tables 
99, 580–594 (2013), 
        
http://dx.doi.org/10.1016/j.adt.2012.11.001
        [16] P. Bogdanovich and R. Kisielius, Energy level properties of
        4p
64d
3, 4p
64d
24f,
        and 4p
54d
4 configurations of W
35+,
        At. Data Nucl. Data Tables 
100, 1593–1602 (2014), 
        
http://dx.doi.org/10.1016/j.adt.2014.06.003
        [17] P. Bogdanovich, V. Jonauskas, and O. Rancova, Solving
        quasi-relativistic equations for hydrogenlike ions with account
        of the finite size of a nucleus, Nucl. Instrum. Methods B 
235,
        145–148 (2005), 
        
http://dx.doi.org/10.1016/j.nimb.2005.03.162
        [18] P. Bogdanovich and O. Rancova, Quasirelativistic
        Hartree–Fock equations consistent with Breit–Pauli approach,
        Phys. Rev. A 
74(5), 052501 (2006), 
        
http://dx.doi.org/10.1103/PhysRevA.74.052501
        [19] P. Bogdanovich and O. Rancova, Adjustment of the
        quasirelativistic equations for 
p electrons, Phys. Rev.
        A 
76, 012507 (2007), 
        
http://dx.doi.org/10.1103/PhysRevA.76.012507
        [20] P. Bogdanovich and O. Rancova, Quasirelativistic approach
        for 
ab initio study of highly charged ions, Phys.
        Scripta 
78, 045301 (2008), 
        
http://dx.doi.org/10.1088/0031-8949/78/04/045301
        [21] P. Bogdanovich and R. Karpuškienė, Numerical methods of the
        preliminary evaluation of the role of admixed configurations in
        atomic calculations, Comput. Phys. Commun. 
134, 321–334
        (2001), 
        
http://dx.doi.org/10.1016/S0010-4655(00)00214-9
        [22] P. Bogdanovich, R. Karpuškienė, and A. Momkauskaitė, Some
        problems of calculation of energy spectra of complex atomic
        configurations, Comput. Phys. Commun. 
143, 174–180
        (2002), 
        
http://dx.doi.org/10.1016/S0010-4655(01)00446-5
        [23] A. Hibbert, R. Glass, and C. Froese Fischer, A general
        program for computing angular integrals of the Breit–Pauli
        Hamiltonian, Comput. Phys. Commun. 
64, 445–472 (1991), 
        
http://dx.doi.org/10.1016/0010-4655(91)90138-B
        [24] C. Froese Fischer, M.R. Godefroid, and A. Hibbert, A
        program for performing angular integrations for transition
        operators, Comput. Phys. Commun. 
64, 486–500 (1991), 
        
http://dx.doi.org/10.1016/0010-4655(91)90140-G
        [25] C. Froese Fischer and M.R. Godefroid, Programs for
        computing 
LS and 
LSJ transitions from MCHF wave
        functions, Comput. Phys. Commun. 
64, 501–519 (1991), 
        
http://dx.doi.org/10.1016/0010-4655(91)90141-7
        [26] G. Gaigalas, Z. Rudzikas, and C. Froese Fischer, An
        efficient approach for spin-angular integrations in atomic
        structure calculations, J. Phys. B 
30, 3747–3771 (1997),
        
        
http://dx.doi.org/10.1088/0953-4075/30/17/006
        [27] G. Gaigalas, Z. Rudzikas, and C. Froese Fischer, Reduced
        coefficients (subcoefficients) of fractional parentage for 
p-,
        
d-, and 
f-shells, At. Data Nucl. Data Tables 
70,
        1–39 (1998), 
        
http://dx.doi.org/10.1006/adnd.1998.0782
        [28] A. Kramida, Yu Ralchenko, J. Reader, and NIST ASD Team
        (2014), 
NIST Atomic Spectra Database (version 5.2)
        (National Institute of Standards and Technology, Gaithersburg,
        MD, 2014), 
        
http://physics.nist.gov/asd
        [29] C. Froese Fischer, Evaluation and comparison of the
        configuration interaction calculations for complex atoms, Atoms
        
2, 1–14 (2014), 
        
http://dx.doi.org/10.3390/atoms2010001
        [30] S. Aggarwal, A.K.S. Jha, and M. Mohan, Multiconfigurational
        Dirac–Fock energy levels and radiative rates for Br-like
        tungsten, Can. J. Phys. 
91, 394–400 (2013), 
        
http://dx.doi.org/10.1139/cjp-2013-0013
        [31] K.M. Aggarwal and F.P. Keenan, Energy levels, radiative
        rates, and lifetimes for transitions in W XL, At. Data Nucl.
        Data Tables 
100, 1399–1518 (2014), 
        
http://dx.doi.org/10.1016/j.adt.2014.02.006
        [32] C. Biedermann, R. Radtke, R. Seidel, and T. Pütterich,
        Spectroscopy of highly charged tungsten ions relevant to fusion
        plasmas, Phys. Scripta 
T134, 014026 (2009), 
        
http://dx.doi.org/10.1088/0031-8949/2009/T134/014026
        [33] R. Karpuškienė, P. Bogdanovich, and R. Kisielius,
        Significance of 
M2 and 
E3 transitions for 4p
54d
N+1-
        and 4p
64d
N–14f-configuration
        metastable-level lifetimes, Phys. Rev. A 88, 022519 (2013), 
        
http://dx.doi.org/10.1103/PhysRevA.88.022519
        [34] P. Bogdanovich, R. Kisielius, and D. Stonys, Methods,
        algorithms, and computer codes for calculation of
        electron-impact excitation parameters, Lith. J. Phys. 
54,
        67–79(2014), 
        
http://dx.doi.org/10.3952/lithjphys.54201