and Stanisław D. Głazek
      Received 21 May 2015; revised 22 June 2015; accepted 29 September
      2015
      
      
Ridge-like correlations in
        high-energy proton–proton collisions reported by the CMS
        collaboration suggest a collective flow that resembles the one
        in heavy-ion collisions. If the hydrodynamic description is
        valid, then the effect results from the initial anisotropy of
        the colliding matter which depends on the structure of protons.
        Following recent theoretical developments, we propose several
        phenomenological models of the proton structure and calculate
        the anisotropy coefficients using the Monte Carlo Glauber model.
        Our estimates suggest that the event multiplicity dependence
        allows one to discriminate between different proton models.
      
      References
          / Nuorodos
          
        [1] V. Khachatryan et al. [CMS Collaboration],
        Observation of long-range, near-side angular correlations in
        proton–proton collisions at the LHC, J. High Energy Phys. 
1009,
        091 (2010), 
        
http://dx.doi.org/10.1007/JHEP09(2010)091
        [2] H. Białkowska, The ridge effect from p-p to Pb-Pb (and
        back), Acta Phys. Pol. B 
43, 705 (2012), 
        
http://dx.doi.org/10.5506/APhysPolB.43.705
        [3] W. Li, Observation of a “Ridge” correlation structure in
        high multiplicity proton–proton collisions: a brief review, Mod.
        Phys. Lett. A 
27, 1230018 (2012), 
        
http://dx.doi.org/10.1142/S0217732312300182
        [4] P. Bożek, Elliptic flow in proton–proton collisions at
        
 =
        7 TeV, Eur. Phys. J. C 
71, 1530 (2011), 
        
http://dx.doi.org/10.1140/epjc/s10052-010-1530-0
        [5] D. d’Enterria, G.Kh. Eyyubova, V.L. Korotkikh, I.P. Lokhtin,
        S.V. Petrushanko, L.I. Sarycheva, and A.M. Snigirev, Estimates
        of hadron azimuthal anisotropy from multiparton interactions in
        proton–proton collisions at
        
 =
        14 TeV, Eur. Phys. J. C 
66, 173 (2010), 
        
http://dx.doi.org/10.1140/epjc/s10052-009-1232-7
        [6] J. Casalderrey-Solana and U.A. Wiedemann, Eccentricity
        fluctuations make flow measurable in high multiplicity 
p-p
        collisions, Phys. Rev. Lett. 
104, 102301 (2010), 
        
http://dx.doi.org/10.1103/PhysRevLett.104.102301
        [7] S.K. Prasad, V. Roy, S. Chattopadhyay, and A.K. Chaudhuri,
        Elliptic flow (υ2) in 
pp collisions at energies
        available at the CERN Large Hadron Collider: a hydrodynamical
        approach, Phys. Rev. C 
82, 024909 (2010), 
        
http://dx.doi.org/10.1103/PhysRevC.82.024909
        [8] P. Bożek, Observation of the collective flow in
        proton–proton collisions, Acta Phys. Pol. B 
41, 837
        (2010), 
        
http://arxiv.org/abs/0911.2392
        [9] G. Ortona, G.S. Denicol, P. Mota, and T. Kodama, Elliptic
        flow in high multiplicity proton–proton collisions at
        
 =
        14 TeV as a signature of deconfinement and quantum energy
        density fluctuations, arXiv:0911.5158 [hep-ph] (2009), 
        
http://arxiv.org/abs/0911.5158
        [10] T. Pierog, S. Porteboeuf, I. Karpenko, and K. Werner,
        Collective flow in (anti)proton–proton collision at Tevatron and
        LHC, arXiv:1005.4526 [hep-ph] (2010), 
        
http://arxiv.org/abs/1005.4526
        [11] I. Bautista, L. Cunqueiro, J. Dias de Deus, and C. Pajares,
        Particle production azimuthal asymmetries in a clustering of
        color sources model, J. Phys. G 
37, 015103 (2010), 
        
http://dx.doi.org/10.1088/0954-3899/37/1/015103
        [12] E. Avsar, Ch. Flensburg, Y. Hatta, J.-Y. Ollitrault, and T.
        Ueda, Eccentricity and elliptic flow in proton–proton collisions
        from parton evolution, Phys. Lett. B 
702, 394 (2011), 
        
http://dx.doi.org/10.1016/j.physletb.2011.07.031
        [13] W.-T. Deng, Z. Xu, and C. Greiner, Elliptic and triangular
        flow and their correlation in ultrarelativistic high
        multiplicity proton–proton collisions at 14 TeV, Phys. Lett. B 
711,
        301 (2012), 
        
http://dx.doi.org/10.1016/j.physletb.2012.04.010
        [14] M.L. Miller, K. Reygers, S.J. Sanders, and P. Steinberg,
        Glauber modeling in high energy nuclear collisions, Ann. Rev.
        Nucl. Part. Sci. 
57, 205 (2007), 
        
http://dx.doi.org/10.1146/annurev.nucl.57.090506.123020
        [15] H.J. Drescher, A. Dumitru, C. Gombeaud, and J.Y.
        Ollitrault, the centrality dependence of elliptic flow, The
        hydrodynamic limit, and the viscosity of hot QCD, Phys. Rev. C 
76,
        024905 (2007), 
        
http://dx.doi.org/10.1103/PhysRevC.76.024905
        [16] B. Alver and G. Roland, Collision geometry fluctuations and
        triangular flow in heavy-ion collisions, Phys. Rev. C 
81,
        054905 (2010), 
        
http://dx.doi.org/10.1103/PhysRevC.81.054905
        [17] J.D. Bjorken, S.J. Brodsky, and A.S. Goldhaber, Possible
        multiparticle ridge-like correlations in very high multiplicity
        proton–proton collisions, Phys. Lett. B 
726, 344 (2013),
        
        
http://dx.doi.org/10.1016/j.physletb.2013.08.066
        [18] S.D. Głazek, Hypothesis of quark binding by condensation of
        gluons in hadrons, Few-Body Syst. 
52, 367 (2012), 
        
http://dx.doi.org/10.1007/s00601-011-0282-1
        [19] S. Chatrchyan et al. [CMS Collaboration], Measurement of
        the inelastic proton–proton cross section at
        
 =
        7 TeV, Phys. Lett. B 
722, 5 (2013), 
        
http://dx.doi.org/10.1016/j.physletb.2013.03.024
        [20] J.-P. Blaizot, W. Broniowski, and J.-Y. Ollitrault,
        Correlations in the Monte Carlo Glauber model, Phys. Rev. C 
90,
        034906 (2014), 
        
http://dx.doi.org/10.1103/PhysRevC.90.034906
        [21] V. Khachatryan et al. [CMS Collaboration], Charged particle
        multiplicities in 
pp interactions at
        
 =
        0.9, 2.36 and 7 TeV, J. High Energy Phys. 
1101, 079
        (2011), 
        
http://dx.doi.org/10.1007/JHEP01(2011)079
        [22] A. Białas, M. Błeszyński, and W. Czyż, Multiplicity
        distributions in nucleus-nucleus collisions at high energies,
        Nucl. Phys. B 
111, 461 (1976), 
        
http://dx.doi.org/10.1016/0550-3213(76)90329-1
        [23] G. Altarelli, N. Cabibbo, L. Maiani, and R. Petronzio, The
        nucleon as a bound state of three quarks and deep inelastic
        phenomena, Nucl. Phys. B 
69, 531 (1974), 
        
http://dx.doi.org/10.1016/0550-3213(74)90452-0
        [24] L. Van Hove and S. Pokorski, High-energy hadron-hadron
        collisions and internal hadron structure, Nucl. Phys. B 
86,
        243 (1975), 
        
http://dx.doi.org/10.1016/0550-3213(75)90443-5
        [25] R.C. Hwa, Evidence for valence-quark clusters in nucleon
        structure functions, Phys. Rev. D 
22, 759 (1980), 
        
http://dx.doi.org/10.1103/PhysRevD.22.759