Received 22 May 2015; revised 11 June 2015; accepted 29 September
      2015
      
      
Dilatometric tests, thermal
        mechanical analysis (TMA), quasistatic tensile tests,
        hydrostatic weighting, and scanning electron microscopy (SEM)
        were performed on the multiwalled carbon nanotube (MWCNT)/epoxy
        nanocomposite (NC) with different filler content (c =
        0–3.8% wt.) in order to determine the influence of MWCNT content
        on the thermophysical and mechanical properties of NC. The
        experimental results show the physical properties versus the
        nanofiller content and the existence of the optimal MWCNT
        content (1% wt.) in epoxy resin that maximally improves the
        thermophysical properties of NC in comparison with unfilled
        epoxy. Thus, NC with 1% wt. filler content shows the maximal
        decrease of thermal expansion coefficient by 68%, the maximal
        increase of glass transition temperature and tensile strength by
        23 °C and 18%, respectively. Comparing the results it can be
        seen that after exceeding the defined optimal filler content
        over 1% wt. the investigated properties get worse. The
        correlation between the investigated mechanical and
        thermophysical properties is estimated and reported.
      
      References
          / Nuorodos
          
         [1] J.
        Bicerano, Prediction of Polymer Properties (Marcel Dekker, New
        York, 2002) pp. 368–455, 
        
          http://dx.doi.org/10.1002/pi.1643
        [2] P. LeBaron, Z. Wang, and T.I. Pinnavaia, Polymerlayered
        silicate nanocomposites: an overview, Appl. Clay Sci. 
15,
        11–29 (1999), 
        
          http://dx.doi.org/10.1016/S0169-1317(99)00017-4
        [3] K. Aniskevich, O. Starkova, J. Jansons, and A. Aniskevich,
        Viscoelastic properties of a silica-filled styrene-butadiene
        rubber under uniaxial tension, Mech. Compos. Mater. 
46,
        375–386 (2010), 
        
          http://dx.doi.org/10.1007/s11029-010-9154-x
        [4] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S.
        Seal, Graphene based materials: Past, present and future, Progr.
        Mater. Sci. 
56, 1178–1271 (2011), 
        
          http://dx.doi.org/10.1016/j.pmatsci.2011.03.003
        [5] M. Moniruzzaman and K.I. Winey, Polymer nanocomposites
        containing carbon nanotubes, Macromolecules 
39,
        5194–5205 (2006), 
        
          http://dx.doi.org/10.1021/ma060733p
        [6] D.R. Paul and L.M. Robeson, Polymer nanotechnology:
        Nanocomposites, Polymer 
49(15), 3187–3204 (2008), 
        
          http://dx.doi.org/10.1016/j.polymer.2008.04.017
        [7] I. Vera-Agullo, A. Gloria-Pereira, H. Varela-Rizo, J.L.
        Gonzales, and I. Martin-Gullon, Comparative study of the
        dispersion and functional properties of multiwall carbon
        nanotubes and helical-ribbon carbon nanofibers in polyester
        nanocomposites, Compos. Sci. Techn. 
69, 1521–1532
        (2009), 
        
          http://dx.doi.org/10.1016/j.compscitech.2008.11.032
        [8] H.S. Khare and D.L. Burris, Quantitative method for
        measuring nanocomposite dispersion, Polymer 
51, 719–729
        (2010), 
        
          http://dx.doi.org/10.1016/j.polymer.2009.12.031
        [9] Z.K. Chen, J.P. Yang, Q.Q. Ni, S.Y. Fu., and Y.G. Huang,
        Reinforcement of epoxy resins with multi-walled walled carbon
        nanotubes for enhancing cryogenic mechanical properties, Polymer
        
50, 4753–4759 (2009), 
        
          http://dx.doi.org/10.1016/j.polymer.2009.08.001
        [10] M. Abdalla, D. Dean, M. Theodore, J. Fielding, . Nyairo,
        and G. Price, Magnetically processed carbon nanotube/epoxy
        nanocomposites: Morphology, thermal, and mechanical properties,
        Polymer 
51, 1614–1620 (2010), 
        
http://dx.doi.org/10.1016/j.polymer.2009.05.059
        [11] R.D. Maksimov, J. Bitenieks, E. Plume, J. Zicans, and R.
        Merijs Meri, The effect of introduction of carbon nanotubes on
        the physicomechanical properties of poly vinylacetate, Mech.
        Compos. Mater. 
46(3), 237–242 (2010), 
        
          http://dx.doi.org/10.1007/s11029-010-9142-1
        [12] L. Bokobza, Multiwall carbon nanotube elastomeric
        composites: a review, Polymer 
48, 719–729 (2007), 
        
          http://dx.doi.org/10.1016/j.polymer.2007.06.046
        [13] A. Warrier, A. Godara, O. Rochez, L. Mezzo, F. Luizi, L.
        Gorbatikh, S.V. Lomov, A.V.V. Willem, and I. Verpoest, The
        effect of adding carbon nanotubes to glass/epoxy composites in
        the fibre sizing and/or the matrix, Compos. Appl. Sci. Manuf. 
41,
        532–538 (2010), 
        
          http://dx.doi.org/10.1016/j.compositesa.2010.01.001
        [14] A. Martone, C. Formicola, M. Giordano, and M. Zarrelli,
        Reinforcement efficiency of multiwalled carbon nanotube/epoxy
        nano composites, Compos. Sci. Tech. 
70, 1154–1160
        (2010), 
        
          http://dx.doi.org/10.1016/j.compscitech.2010.03.001
        [15] A. Martone, V. Faiella, V. Antonucci, M. Giordano, and M.
        Zarrelli, The effect of the aspect ratio of carbon nanotubes on
        their effective reinforcement modulus in an epoxy matrix,
        Compos. Sci. Tech. 
71, 1117–1123 (2011), 
        
          http://dx.doi.org/10.1016/j.compscitech.2011.04.002
        [16] H.W. Wang, H.W. Zhou, R.D. Peng, and L. Mishnoevsky Jr.,
        Nanoreinforced polymer composites: 3D FEM modeling with
        effective interface concept, Compos. Sci. Tech. 
71,
        980–988 (2011), 
        
http://dx.doi.org/10.1016/j.compscitech.2011.03.003
        [17] S.Y. Fu, X.Q. Feng, B. Lauke, and Y.W. Mai, Effect of
        particle size, particle/matrix interface adhesion and particle
        loading on mechanical properties of particulate composites,
        Compos. B Eng. 
39, 933–961 (2008), 
        
          http://dx.doi.org/10.1016/j.compositesb.2008.01.002
        [18] S.G. Prolongo, M. Campo, M.R. Gude, R. Chaos-Moran, and A.
        Urena, Thermo-physical characterization of epoxy resin
        reinforced by amino-functionalized carbon nanofibers, Compos.
        Sci. Tech. 
69, 349–357 (2009), 
        
          http://dx.doi.org/10.1016/j.compscitech.2008.10.018
        [19] A. Montazeri, K. Pourshamsian, and M. Riazian, Viscoelastic
        properties and determination of free volume fraction of
        multi-walled carbon nanotube/ epoxy composite using dynamic
        mechanical thermal analysis, Mater. Des. 
36, 408–414
        (2012), 
        
          http://dx.doi.org/10.1016/j.matdes.2011.11.038
        [20] V.K. Srivastava, Modeling and mechanical performance of
        carbon nanotube/epoxy resin composites, Mater. Des. 
39,
        432–436 (2012), 
        
          http://dx.doi.org/10.1016/j.matdes.2012.02.039
        [21] T. Glaskova, M. Zarrelli, A. Borisova, K. Timchenko, A.
        Aniskevich, and M. Giordano, Method of quantitative analysis of
        filler dispersion in composite systems with spherical
        inclusions, Compos. Sci. Tech. 
71, 1543–1549 (2011), 
        
          http://dx.doi.org/10.1016/j.compscitech.2011.06.009
        [22] T. Glaskova, M. Zarrelli, A. Aniskevich, M. Giordano, L.
        Trinkler, and B. Berzina, Quantitative optical analysis of
        filler dispersion degree in MWCNT-epoxy nanocomposite, Compos.
        Sci. Tech. 
72, 477–481 (2012),
        
          http://dx.doi.org/10.1016/j.compscitech.2011.11.029
        [23] Technical data sheet of LH289 and H289 products, provided
        by 
Havel Composites company, 2009, 
        
          http://www.havel-composites.cz