[PDF]    http://dx.doi.org/10.3952/physics.v55i3.3147

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 182–190 (2015)


FEMTOSECOND DIRECT LASER WRITING OF PHOTONIC SPATIAL FILTERS IN SODA–LIME GLASS
Darius Gailevičiusa, Vytautas Purlysa, Lina Maigytėb, Eugenijus Gaižauskasa, Martynas Peckusa, Roaldas Gadonasa, and Kęstutis Staliūnastb,c
aLaser Research Center, Department of Quantum Electronics, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: darius.gailevicius@ff.vu.lt
bDepartament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Spain
cInstitucio Catalana de Recerca i Estudis Avancats (ICREA)

Received 22 May 2015; revised 23 August 2015; accepted 29 September 2015

An experimental study of the efficiency of recently predicted photonic crystal (PhC) based spatial filtering is provided. Photonic structures are fabricated using a direct laser writing technique employing point-by-point modification by tightly focused femtosecond pulses in soda–lime glass. Such PhCs are characterized by using an s-coefficient – a parameter defining PhC filter efficiency. We explore the dependences of filtering efficiency on different laser writing conditions, such as irradiation peak intensity and the polarization of laser beam. In addition, we show that the PhCs can also exhibit even asymmetric shapes of voxels under particular conditions.
Keywords: photonic crystal, spatial filtering, femtosecond fabrication, glass
PACS: 42.60.-v, 42.79.Ci, 81.16.-c, 81.05.-t


ERDVINIŲ FILTRŲ TIESIOGINIS LAZERINIS FORMAVIMAS FEMTOSEKUNDINIAIS IMPULSAIS NATRIO-KALCIO SILIKATINIAME STIKLE
Darius Gailevičiusa, Vytautas Purlysa, Lina Maigytėb, Eugenijus Gaižauskasa, Martynas Peckusa, Roaldas Gadonasa, Kęstutis Staliūnastb,c
aVilniaus universiteto Lazerinių tyrimų centras, Vilnius, Lietuva
bKatalonijos politechnikos universiteto Fizikos ir branduolinės inžinerijos katedra, Terasa, Ispanija
cKatalonų tyrimų ir aukštųjų studijų institutas, Barselona, Ispanija

Erdvinis filtravimas dažnai naudojamas lazerinių pluoštų erdvinei kokybei gerinti. Neseniai buvo parodytas erdvinis pluoštų filtravimas fotoniniais kristalais (FK) [24]. Šiame darbe tiriama šių naujo tipo FK erdvinių filtrų efektyvumo priklausomybė nuo FK įrašymo sąlygų. Fotoniniai dariniai suformuoti tiesioginio lazerinio rašymo būdu taikant pataškinį medžiagos lūžio rodiklio modifikavimą aštriai sufokusuotais femtosekundiniais impulsais natrio-kalcio silikatiniame stikle. Tokie FK yra apibūdinami panaudojus s-koeficientą – parametrą, skirtą apibrėžti FK filtro efektyvumą. Nagrinėjama filtravimo efektyvumo priklausomybė nuo skirtingų lazerinio įrašymo sąlygų, pavyzdžiui, smailinio spinduliuotės intensyvumo ir lazerio pluošto poliarizacijos. Parodoma, kad esant atitinkamoms įrašymo sąlygoms FK gali pasižymėti asimetriška vokselių sandara.


References / Nuorodos

[1] A.E. Siegman, Defining, measuring, and optimizing laser beam quality, Proc. SPIE 1868, 2–12 (1993),
http://dx.doi.org/10.1117/12.150601
[2] J.I. Kato, I. Yamaguchi, and H. Tanaka, Nonlinear spatial filtering with a dye-doped liquid-crystal cell, Opt. Lett. 21, 767 (1996),
http://dx.doi.org/10.1364/OL.21.000767
[3] I. Moreno, J.J. Araiza, and M. Avendano-Alejo, Thin-film spatial filters, Opt. Lett. 30, 914 (2005),
http://dx.doi.org/10.1364/OL.30.000914
[4] D. Shurig and D.R. Smith, Spatial filtering using media with indefinite permittivity and permeability tensors, Appl. Phys. Lett. 82, 2215 (2003),
http://dx.doi.org/10.1063/1.1562344
[5] O.F. Siddiqui and G. Eleftheriades, Resonant modes in continuous metallic grids over ground and related spatial-filtering applications, J. Appl. Phys. 99, 083102 (2006),
http://dx.doi.org/10.1063/1.2189929
[6] A. Žukauskas, M. Malinauskas, and E. Brasselet, Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale, Appl. Phys. Lett. 103, 181122 (2013),
http://dx.doi.org/10.1063/1.4828662
[7] E. Colak, A.O. Cakmak, A.E. Serebryannikov, and E. Ozbay, Spatial filtering using dielectric photonic crystals at beam-type excitation, J. Appl. Phys. 108, 113106 (2010),
http://dx.doi.org/10.1063/1.3498810
[8] A.Y. Petrov and E. Ozbay, Toward photonic crystal based spatial filters with wide angle ranges of total transmission, Appl. Phys. Lett. 94, 181101 (2009),
http://dx.doi.org/10.1063/1.3127443
[9] Z. Luo, Z. Tang, Y. Xiang, H. Luo, and S. Wen, Polarization-independent low-pass spatial filters based on one-dimensional photonic crystals containing negative-index materials, Appl. Phys. Lett. B 94, 641–646 (2009),
http://dx.doi.org/10.1007/s00340-009-3376-4
[10] Z. Tang, D. Fan, S. Wen, Y. Ye, and C. Zhao, Low-pass spatial filtering using a two-dimensional self-collimating photonic crystal, Chin. Opt. Lett. 5(S1), S211–S213 (2007),
https://www.osapublishing.org/col/abstract.cfm?uri=col-5-101-S211
[11] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059–2062 (1987),
http://dx.doi.org/10.1103/PhysRevLett.58.2059
[12] R. Pico, V.J. Sanchez-Morcillo, I. Perez-Arjona, and K. Staliunas, Spatial filtering of sound beams by sonic crystals, Appl. Acoust. 73, 302–306 (2012),
http://dx.doi.org/10.1016/j.apacoust.2011.09.011
[13] R. Pico, I. Perez-Arjona, V.J. Sanchez-Morcillo, and K. Staliunas, Evidences of spatial (angular) filtering of sound beams by sonic crystals, Appl. Acoust. 74, 945–948 (2013),
http://dx.doi.org/10.1016/j.apacoust.2013.01.003
[14] K. Staliunas and V.J. Sanchez-Morcillo, Spatial filtering of light by chirped photonic crystals, Phys. Rev. A 79(5), 053807 (2009),
http://dx.doi.org/10.1103/PhysRevA.79.053807
[15] L. Maigyte, T. Gertus, M. Peckus, J. Trull, C. Cojocaru, V. Sirutkaitis, and K. Staliunas, Signatures of light-beam spatial filtering in a three-dimensional photonic crystal, Phys. Rev. A 82(4), 043819 (2010),
http://dx.doi.org/10.1103/PhysRevA.82.043819
[16] V. Purlys, L. Maigyte, D. Gailevicius, M. Peckus, M. Malinauskas, and K. Staliunas, Spatial filtering by chirped photonic crystals, Phys. Rev. A 87, 033805 (2013),
http://dx.doi.org/10.1103/PhysRevA.87.033805
[17] V. Purlys, L. Maigyte, D. Gailevicius, M. Peckus, M. Malinauskas, R. Gadonas, and K. Staliunas, Spatial filtering by axisymmetric photonic microstructures, Opt. Lett. 39(4), 929–932 (2014),
http://dx.doi.org/10.1364/OL.39.000929
[18] D. Gailevicius, V. Purlys, L. Maigyte, M. Peckus, and K. Staliunas, Chirped axisymmetric photonic microstructures for spatial filtering, J. Nanophoton. 8(1), 084094 (2014),
http://dx.doi.org/10.1117/1.JNP.8.084094
[19] K. Staliunas, Removal of excitations of Bose-Einstein condensates by space- and time-modulated potentials, Phys. Rev. A 84, 013626 (2011),
http://dx.doi.org/10.1103/PhysRevA.84.013626
[20] A. Žukauskas, G. Batavičiūtė, M. Ščiuka, T. Jukna, A. Melninkaitis, and M. Malinauskas, Characterization of photopolymers used in laser 3D micro/nanolithography by means of laser-induced damage threshold (LIDT), Opt. Mater. 4(8), 1601–1616 (2014),
http://dx.doi.org/10.1364/OME.4.001601
[21] J. Fischer and M. Wegener, Three-dimensional optical laser lithography beyond the diffraction limit, Laser Photonics Rev. 7(1), 22–44 (2013),
http://dx.doi.org/10.1002/lpor.201100046
[22] V. Purlys, L. Maigyte, D. Gailevicius, M. Peckus, R. Gadonas, and K. Staliunas, Super-collimation by axisymmetric photonic crystals, Appl. Phys. Lett. 104, 221108 (2014),
http://dx.doi.org/10.1063/1.4881839
[23] L. Maigyte, V. Purlys, J. Trull, M. Peckus, C. Cojocaru, D. Gailevicius, M. Malinauskas, and K. Staliunas, Flat lensing in visible frequency range by woodpile photonic crystals, Opt. Lett. 38(14), 2376–2378 (2013),
http://dx.doi.org/10.1364/OL.38.002376
[24] L. Maigyte and K. Staliunas, Spatial filtering with photonic crystals, App. Phys. Rev. 2, 011102 (2015),
http://dx.doi.org/10.1063/1.4907345
[25] C. Malouin, A. Villeneuve, G. Vitrant, and R.A. Lessard, Degenerate four-wave mixing geometry in thin-film waveguides for nonlinear material characterization, Opt. Lett. 21(1), 21–23 (1996),
http://dx.doi.org/10.1364/OL.21.000021
[26] S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics, Appl. Phys. A 77(1), 109–111 (2003),
http://dx.doi.org/10.1007/s00339-003-2088-6
[27] H. Zhang, S.M. Eaton, and P.R. Herman, Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser, Opt. Lett. 32(17), 2559 (2007),
http://dx.doi.org/10.1364/OL.32.002559
[28] M. Beresna, M. Gecevičius, P.G. Kazansky, and T. Gertus, Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass, Appl. Phys. Lett. 98, 201101 (2011),
http://dx.doi.org/10.1063/1.3590716
[29] M. Malinauskas, P. Danilevičius, and S. Juodkazis, Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses, Opt. Express 19, 5602 (2011),
http://dx.doi.org/10.1364/OE.19.005602
[30] S. Nisara, M.A. Sheikha, L. Lia, and S. Safdarb, Effect of thermal stresses on chip-free diode laser cutting of glass, Opt. Laser. Technol. 41(3), 318–327 (2009),
http://dx.doi.org/10.1016/j.optlastec.2008.05.025
[31] K.M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Writing waveguides in glass with a femtosecond laser, Opt. Lett. 21(21), 1729–1731 (1996),
http://dx.doi.org/10.1364/OL.21.001729
[32] A.M. Streltsov and N.F. Borrelli, Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses, Opt. Lett. 26(1), 42–43 (2001),
http://dx.doi.org/10.1364/OL.26.000042
[33] A.M. Streltsov and N.F. Borrelli, Study of femtosecond-laser-written waveguides in glasses, J. Opt. Soc. Am. B 19(10), 2496–2504 (2002),
http://dx.doi.org/10.1364/JOSAB.19.002496
[34] T.-C. Poon and T. Kim, Engineering Optics with MATLAB® (World Scientific, Singapore, 2006),
http://www.worldscientific.com/worldscibooks/10.1142/6166