Linas Jonušauskas, Edvinas Skliutas, Simas Butkus, and Mangirdas
      Malinauskas
Rapid development in 3D
        printing technologies promises a cheap and simple yet reliable
        way for producing various components and structures for research
        in numerous science fields. This work is dedicated to
        investigate the possibility to use fused filament fabrication
        based 3D printing to fabricate microchannels for microfluidical
        applications as well as diverse 3D scaffolds for biomedical
        applications. We also examine the possibility to further improve
        fabricated structures by employing an ultrafast laser, namely by
        laser light filamentation and using direct laser writing.
        Results of this study are discussed in detail and outlook for
        further work in this field is given.
      
      Darbe pristatoma mikrofluidinių
        ir biomedicininių darinių gamyba naudojant trimatį spausdinimą.
        Aptariamos galimybės ir dėl šio metodo atsirandantys sunkumai
        gaminant nurodytoms sritims skirtus funkcinius mikrodarinius.
        Nusakoma, kaip šiuo būdu pagaminti dariniai galėtų būti toliau
        tobulinami naudojant nanolitografiją ir lazerinį nanoapdorojimą.
        Nors šiuo metu egzistuoja keletas techninių problemų, ribojančių
        trimačio spausdinimo ir tiesioginio lazerinio rašymo derinimą
        gaminant minėtuosius darinius, daroma išvada, kad nėra jokių
        fundamentalių priežasčių, trukdančių išspręsti šias problemas.
      
      References
          / Nuorodos
          
         [1] G.M.
        Whitesides, The origins and the future of microfluidics, Nature
        
447, 435–411 (2006), 
        
http://dx.doi.org/10.1038/nature05058
        [2] J.J. Grodzinski, Polymers for tissue engineering, medical
        devices, and regenerative medicine. Concise general review of
        recent studies, Polymer. Adv. Tech. 
17, 395–418 (2006),
        
        
http://dx.doi.org/10.1002/pat.729
        [3] T. Buckmann, M. Thiel, M. Kadic, R. Schittny, and M.
        Wegener, An elastomechanical unfeelability cloak made of
        pentamode metamaterials, Nat. Comm. 
5, 4130 (2014), 
        
http://dx.doi.org/10.1038/ncomms5130
        [4] C.-H. Lin, G.-B. Lee, B.-W. Chang, and G.-L. Chang, A new
        fabrication process for ultrathick microfluidic microstructures
        utilizing SU-8 photoresist, J. Micromech. Microeng. 
12,
        590–597 (2002), 
        
http://dx.doi.org/10.1088/0960-1317/12/5/312
        [5] Y. Xia and G.M. Whitesides, Soft lithography, Annu. Rev.
        Mater. Sci. 
28, 153–184 (1998), 
        
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
        [6] M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas,
        Two-photon polymerization for fabrication of three-dimensional
        micro- and nanostructures over a large area, Proc. SPIE 
7204,
        72040C–1 (2009), 
        
http://dx.doi.org/10.1117/12.811125
        [7] E. Sachs, M. Cima, J. Cornie, D. Band, J. Bredt, A.
        Curodeau, T. Fan, S. Khanuja, A. Lauder, J. Lee, and S.
        Michaels, Three-dimensional printing: the physics and
        implications of additive manufacturing, CIRP Ann. Manuf. Tech. 
42(1),
        257–260 (1993), 
        
http://dx.doi.org/10.1016/S0007-8506(07)62438-X
        [8] M. Malinauskas, S. Rekštytė, L. Lukoševičius, S. Butkus, E.
        Balčiūnas, M. Pečiukaitytė, D. Baltriukienė, V. Bukelskienė, A.
        Butkevičius, P. Kucevičius, V. Rutkūnas, and S. Juodkazis, 3D
        microporous scaffolds manufactured via combination of fused
        filament fabrication and direct laser writing ablation,
        Micromachines 
5(12), 839–858 (2014), 
        
http://dx.doi.org/10.3390/mi5040839
        [9] K. Sugioka and Y. Cheng, Femtosecond laser three-dimensional
        micro- and nanofabrication, Appl. Phys. Rev. 
1, 041303
        (2014), 
        
http://dx.doi.org/10.1063/1.4904320
        [10] 
https://ultimaker.com/
        (2015)
        [11] V. Melissinaki, A.A. Gill, I. Ortega, M. Vamvakaki, A.
        Ranella, J.W. Haycock, C. Fotakis, M. Farsari, and F.
        Claeyssens, Direct laser writing of 3D scaffolds for neural
        tissue engineering applications, Biofabrication 
3,
        045005 (2011), 
        
http://dx.doi.org/10.1088/1758-5082/3/4/045005
        [12] J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov,
        A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A.
        Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis,
        Preclinical study of sz2080 material 3D microstructured
        scaffolds for cartilage tissue engineering made by femtosecond
        direct laser writing lithography, Biofabrication 
7(1),
        015015 (2015), 
        
http://dx.doi.org/10.1088/1758-5090/7/1/015015
        [13] S. Butkus, E. Gaižauskas, D. Paipulas, Ž. Viburys, D.
        Kaškelytė, M. Barkauskas, A. Alesenkov, and V. Sirutkaitis,
        Rapid microfabrication of transparent materials using filamented
        femtosecond laser pulses, Appl. Phys. A 
114(1), 81–90
        (2013), 
        
http://dx.doi.org/10.1007/s00339-013-8108-2
        [14] W. Haske, V.W. Chem, J.M. Hales, W. Dong, S. Barlow, S.R.
        Marder, and J.W. Perry, 65 nm feature sizes using visible
        wavelength 3-D multiphoton lithography, Opt. Express 
15(6),
        3426–3436 (2007), 
        
http://dx.doi.org/10.1364/OE.15.003426
        [15] A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B.
        MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki,
        M. Farsari, and C. Fotakis, Ultralow shrinkage hybrid
        photosensitive material for two-photon polymerization
        microfabrication, ACS Nano 
2(11), 2257–2262 (2008), 
        
http://dx.doi.org/10.1021/nn800451w
        [16] Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H.
        Misawa, Femtosecond laser photopolymerization of photonic and
        free-movable microstructures in sol–gel hybrid resist, Proc.
        SPIE 
7591, 75910K (2010), 
        
http://dx.doi.org/10.1117/12.840657
        [17] P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas,
        R. Širmenis, D. Baltriukienė, V. Bukelskienė, R. Gadonas, V.
        Sirvydis, A. Piskarskas, and M. Malinauskas, Laser 3D
        micro/nanofabrication of polymers for tissue engineering
        applications, Opt. Laser Tech. 
45, 518–524 (2013), 
        
http://dx.doi.org/10.1016/j.optlastec.2012.05.038
        [18] P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas,
        R. Jarasienė, R. Širmenis, D. Baltriukienė, V. Bukelskienė, R.
        Gadonas, and M. Malinauskas, Micro-structured polymer scaffolds
        fabricated by direct laser writing for tissue engineering, J.
        Biomed. Opt. 
17(8), 081405 (2012), 
        
http://dx.doi.org/10.1117/1.JBO.17.8.081405
        [19] A. Žukauskas, G. Batavičiūtė, M. Ščiuka, T. Jukna, A.
        Melninkaitis, and M. Malinauskas, Characterization of
        photopolymers used in laser 3D micro/nanolithography by means of
        laser-induced damage threshold (LIDT), Opt. Mater. Express 
4(8),
        1601–1616 (2014), 
        
http://dx.doi.org/10.1364/OME.4.001601
        [20] R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis,
        Nano-groove and 3D fabrication by controlled avalanche using
        femtosecond laser pulses, Opt. Mater. Express 
3(10),
        1674–1686 (2013), 
        
http://dx.doi.org/10.1364/OME.3.001674
        [21] S. Rekštytė, L. Jonušauskas, A. Žukauskas, G. Gervinskas,
        M. Malinauskas, and S. Juodkazis, Three-dimensional
        nano-structuring of polymer materials by controlled avalanche
        using femtosecond laser pulses, Proc. SPIE 
8972, 89721O
        (2014), 
        
http://dx.doi.org/10.1117/12.2040971
        [22] L. Jonušauskas, S. Rekštytė, and M. Malinauskas,
        Augmentation of direct laser writing fabrication throughput for
        three-dimensional structures by varying focusing conditions,
        Opt. Eng. 
53(12), 125102 (2014), 
        
http://dx.doi.org/10.1117/1.OE.53.12.125102
        [23] M. Malinauskas, E. Skliutas, A. Šešok, D. Mizeras, L.
        Jonušauskas, and A. Piskarskas, Tailoring bulk mechanical
        properties of 3d printed objects of polylactic acid varying
        internal micro-architecture, Proc. SPIE 
9505, 95050P
        (2015), 
        
http://dx.doi.org/10.1117/12.2178515
        [24] E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas,
        and G. Račiukaitis, Fabrication of periodic micro-structures by
        holographic lithography, Lith. J. Phys. 
53(4), 227–237
        (2013), 
        
http://dx.doi.org/10.3952/physics.v53i4.2765
        [25] Y. Liu, P.L. Nolte, and D. Nolte, General 3D microporous
        structures fabricated with two-photon laser machining, Proc.
        SPIE 
6886, 68860Y (2008), 
        
http://dx.doi.org/10.1117/12.760313
        [26] A. Ovsianikov, M. Gruene, M. Pflaum, L. Koch, F. Maiorana,
        M. Wilhelmi, A. Haverich, and B. Chichkov, Laser printing of
        cells into 3D scaffolds, Biofabrication 
2(1), 014104
        (2010), 
        
http://dx.doi.org/10.1088/1758-5082/2/1/014104
        [27] P. Abgrall and A.-M. Gue, Lab-on-chip technologies: making
        a microfluidic network and coupling it into a complete
        microsystem: a review, J. Micromech. Microeng. 
17,
        R15–49 (2007), 
        
http://dx.doi.org/10.1088/0960-1317/17/5/R01
        [28] R.B. Fair, Digital microfluidics: is a true lab-on-achip
        possible? Microfluid. Nanofluid. 
3(3), 245–281 (2007), 
        
http://dx.doi.org/10.1007/s10404-007-0161-8
        [29] V. Fleury, Biofluidics of animal morphogenesis: does
        evolution follow stream lines? Comput. Meth. Biomech. Biomed.
        Eng. 
15(S1), 17–18 (2012), 
        
http://dx.doi.org/10.1080/10255842.2012.713596
        [30] M.D. Turner, M. Saba, Q. Zhang, B.P. Cumming, G.E.
        Schroder-Turk, and M. Gu, Miniature chiral beamsplitter based on
        gyroid photonic crystals, Nature Photon. 
7, 801–805
        (2013), 
        
http://dx.doi.org/10.1038/nphoton.2013.233
        [31] A. Žukauskas, M. Malinauskas, and E. Brasselet, Monolithic
        generators of pseudo-nondiffracting optical vortex beams at the
        microscale, Appl. Phys. Lett. 
103(18), 181122 (2013), 
        
http://dx.doi.org/10.1063/1.4828662
        [32] T. Ikegami, R. Ozawa, M.P. Stocker, K. Monaco, J.T.
        Fourkas, and S. Maruo, Development of optically-driven metallic
        microrotors using two-photon microfabrication, J. Laser
        Micro/Nanoeng. 
8(1), 6–10 (2013), 
        
http://dx.doi.org/10.2961/jlmn.2013.01.0002
        [33] P. Sajeesh and A.K. Sen, Particle separation and sorting in
        microfluidic devices: a review, Microfluid. Nanofluid. 
17,
        1–52 (2014), 
        
http://dx.doi.org/10.1007/s10404-013-1291-9
        [34] M. Markovic, J. Van Hoorick, K. Hölzl, M.T. Tromayer, P.
        Gruber, S. Nürnberger, P. Dubruel, S. Van Vlierberghe, R. Liska,
        and A. Ovsianikov, Hybrid tissue engineering scaffolds by
        combination of 3D printing and cell photoencapsulation, J.
        Nanotech. Eng. Med. 
6(2), 021001 (2015), 
        
http://dx.doi.org/10.1115/1.4031466
        [35] Y. Wang, H.-J. Kim, G.V.-Novakovic, and D.L. Kaplan, Stem
        cell-based tissue engineering with silk biomaterials,
        Biomaterials 
27(36), 6064–6082 (2006), 
        
http://dx.doi.org/10.1016/j.biomaterials.2006.07.008