Panaudojant hidrodinaminį modelį
        bei modeliavimą Monte Karlo metodu, ištirtos optiškai sukurtų
        elektronų ir skylių plazmos osciliacijos bekontakčiuose
        terahercinės spinduliuotės emiteriuose. Gautos ryškiai
        išreikštos plazminės osciliacijos n-GaAs emiteryje, kuriame
        osciliacijos yra inicijuotos paviršiniu elektriniu lauku.
        Plazminės osciliacijos taip pat yra aptiktos n-InAs
        emiteryje, kuriame osciliacijos yra sukuriamos foto-Demberio
        efektu.
      References
/
          Nuorodos
        
        [1] J. Pozhela, 
Plasma
          and Current Instabilities in Semiconductors (Pergamon,
        Oxford, 1981), 
        
http://store.elsevier.com/Plasma-and-Current-Instabilities-in-Semiconductors/Juras-Pozhela/isbn-9781483189383/
        [2] Yu. Pozhela and A. Reklaitis, Instability of hot electrons
        in two-valley semiconductors, JETP Lett. 
31(12), 673–676
        (1980), 
        
http://www.jetpLetters.ac.ru/ps/1360/article_20546.pdf
        [3] V. Gružinskis, R. Mickevičius, J. Požela, and A. Reklaitis,
        Collective electron interaction in double-barrier GaAs
        structures, Europhys. Lett. 
5(4), 339–341 (1988), 
        
http://dx.doi.org/10.1209/0295-5075/5/4/010
        [4] J. Požela, E. Širmulis, K. Požela, A. Šilėnas, and V.
        Jucienė, SiC and GaAs emitters as selective terahertz radiation
        sources, Lith. J. Phys. 
53(3), 163–167 (2013), 
        
http://dx.doi.org/10.3952/lithjphys.53306
        [5] K. Požela, E. Širmulis, I. Kašalynas, A. Šilėnas, J. Požela,
        and V. Jucienė, Selective thermal terahertz emission from GaAs
        and AlGaAs, Appl. Phys. Lett. 
105(9), 091601 (2014), 
        
http://dx.doi.org/10.1063/1.4894539
        [6] S. Preu, G.H. Döhler, S. Malzer, L.J. Wang, and A.C.
        Gossard, Tunable, continuous-wave terahertz photomixer sources
        and applications, J. Appl. Phys. 
109(6), 061301 (2011),
        
        
http://dx.doi.org/10.1063/1.3552291
        [7] G. Seniutinas, G. Gervinskas, E. Constable, A. Krotkus, G.
        Molis, G. Valušis, R.A. Lewis, and S. Juodkazis, THz photomixer
        with milled nanoelectrodes on LT-GaAs, Appl. Phys. A 
117(2),
        439–444 (2014), 
        
http://dx.doi.org/10.1007/s00339-014-8685-8
        [8] A. Krotkus, Semiconductors for terahertz photonics
        applications, J. Phys. D 
43(27), 273001 (2010), 
        
http://dx.doi.org/10.1088/0022-3727/43/27/273001
        [9] R.A. Lewis, A review of terahertz sources, J. Phys. D 
47(37),
        374001 (2014), 
        
http://dx.doi.org/10.1088/0022-3727/47/37/374001
        [10] V. Apostolopoulos and M.E. Barnes, THz emitters based on
        the photo-Dember effect, J. Phys. D 
47(37), 374002
        (2014), 
        
http://dx.doi.org/10.1088/0022-3727/47/37/374002
        [11] M. Nakajima, M. Hangyo, M. Ohta, and H. Miyazaki, Polarity
        reversal of terahertz waves radiated from semi-insulating InP
        surfaces induced by temperature, Phys. Rev. 
67(19),
        195308 (2003), 
        
http://dx.doi.org/10.1103/PhysRevB.67.195308
        [12] J.N. Heyman, N. Coates, A. Reinhardt, and G. Strasser,
        Diffusion and drift in terahertz emission at GaAs surfaces,
        Appl. Phys. Lett. 
83(26), 5476–5478 (2003), 
        
http://dx.doi.org/10.1063/1.1636821
        [13] S. Winnerl, S. Sinning, T. Dekorsy, and M. Helm, Increased
        terahertz emission from thermally treated GaSb, Appl. Phys.
        Lett. 
85(15), 3092–3094 (2004), 
        
http://dx.doi.org/10.1063/1.1805197
        [14] Y. Shi, X. Xu, Y. Yang, W. Yan, S. Ma, and L. Wang,
        Anomalous enhancement of terahertz radiation from
        semi-insulating GaAs surfaces induced by optical pump, Appl.
        Phys. Lett. 
89(8), 081129 (2006), 
        
http://dx.doi.org/10.1063/1.2338805
        [15] W. Sha, A.L. Smirl, and W.F. Tseng, Coherent plasma
        oscillations in bulk semiconductors, Phys. Rev. Lett. 
74(21),
        4273–4276 (1995), 
        
http://dx.doi.org/10.1103/PhysRevLett.74.4273
        [16] R. Kersting, K. Unterrainer, G. Strasser, H.F. Kauffmann,
        and E. Gornik, Few-cycle THz emission from cold plasma
        oscillations, Phys. Rev. Lett. 
79(16), 3038–3041 (1997),
        
        
http://dx.doi.org/10.1103/PhysRevLett.79.3038
        [17] W. Fischler, P. Buchberger, R.A. Höpfel, and G. Zandler,
        Ultrafast reflectivity changes in photoexcited GaAs Schottky
        diodes, Appl. Phys. Lett. 
68(20), 2778–2780 (1996), 
        
http://dx.doi.org/10.1063/1.116604
        [18] A. Reklaitis, Monte Carlo analysis of terahertz
        oscillations of photoexcited carriers in GaAs 
p-i-n
        structures, Phys. Rev. B 
74(16), 165305 (2006), 
        
http://dx.doi.org/10.1103/PhysRevB.74.165305
        [19] A. Reklaitis and L. Reggiani, Monte Carlo study of
        shot-noise suppression in semiconductor heterostructure diodes,
        Phys. Rev. B 
60(16), 11683–11693 (1999), 
        
http://dx.doi.org/10.1103/PhysRevB.60.11683
        [20] A. Reklaitis, Terahertz emission from InAs induced by
        photo-Dember effect: Hydrodynamic analysis and Monte Carlo
        simulations, J. Appl. Phys. 
108(5), 053102 (2010), 
        
http://dx.doi.org/10.1063/1.3467526
        [21] R. Kersting, J.N. Heyman, G. Strasser, and K. Unterrainer,
        Coherent plasmons in 
n-doped GaAs, Phys. Rev. B 
58(8),
        4553–4559 (1998), 
        
http://dx.doi.org/10.1103/PhysRevB.58.4553
        [22] D.E. Aspnes and A.A. Studna, Dielectric functions and
        optical parameters for Si, Ge, GaP, GaAs, GaSb, InP, InAs, and
        InSb from 1.5 to 6.0 eV, Phys. Rev. B 
27(2), 985–1009
        (1983), 
        
http://dx.doi.org/10.1103/PhysRevB.27.985
        [23] T. Dekorsy, T. Pfeifer, W. Kütt, and H. Kurz, Subpicosecond
        carrier transport in GaAs surface-space-charge fields, Phys.
        Rev. B 
47(7), 3842–3849 (1993), 
        
http://dx.doi.org/10.1103/PhysRevB.47.3842
        [24] A. Reklaitis, Coherence of terahertz emission from
        photoexcited electron–hole plasma: Hydrodynamic model and Monte
        Carlo simulations, Phys. Rev. B 
77(15), 153309 (2008), 
        
http://dx.doi.org/10.1103/PhysRevB.77.153309
        [25] A. Reklaitis, Theoretical analysis of conditions for
        observation of plasma oscillations in semiconductors from pulsed
        terahertz emission, J. Appl. Phys. 
116(8), 083107
        (2014), 
        
http://dx.doi.org/10.1063/1.4894163
        [26] K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, Terahertz
        radiation from InAs induced by carrier diffusion and drift,
        Phys. Rev. B 
73(15), 155330 (2006), 
        
http://dx.doi.org/10.1103/PhysRevB.73.155330
        [27] E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura,
        M. Hangyo, C. Ponseca Jr., R. Pobre, R. Quiroga, and S. Ono,
        Magnetic-field-induced fourfold azimuthal angle dependence in
        the terahertz radiation power of (100) InAs, Appl. Phys. Lett. 
90(15),
        151915 (2007), 
        
http://dx.doi.org/10.1063/1.2721385
        [28] L.Ö. Olsson, C.B.M. Andersson, M.C. Håkansson, J. Kanski,
        L. Ilver, and U.O. Karlsson, Charge accumulation at InAs
        surfaces, Phys. Rev. Lett. 
76(19), 3626–3629 (1996), 
        
http://dx.doi.org/10.1103/PhysRevLett.76.3626