Kazimieras Nomeika, Mantas Dmukauskas, Ramūnas Aleksiejūnas,
      Patrik Ščajev, Saulius Miasojedovas, Arūnas Kadys, Saulius
      Nargelas, and Kęstutis Jarašiūnas
      Received 22 June 2015; revised 21 July 2015; accepted 29 September
      2015
      
      
KVANTINIO NAŠUMO PAGERINIMAS
            InGaN KVANTINĖSE DUOBĖSE ĮTERPIANT SUPERGARDELĘ IR
            NAUDOJANTIS IMPULSINIU AUGINIMU
        
      Vidinio kvantinio našumo (VKN)
        pagerinimas InGaN kvantinėse duobėse dėl supergardelės įterpimo
        ir impulsinio auginimo pritaikymo ištirtas laikinės skyros
        optinių metodikų kombinacija. Supergardelės tarpsluoksnio
        įterpimas padidino VKN tris kartus, tai gali būti aiškinama
        sumažėjusiu vidiniu elektriniu lauku dėl mažesnių įtempimų ir
        pakeistų lokalizacijos sąlygų. Impulsinio auginimo dėka VKN
        padidėjo dvigubai, tikimiausiai dėl geresnės defektų kontrolės
        struktūrose. Šviesos diodo darinys su viršutiniu p tipo GaN
        kontaktiniu sluoksniu buvo pagamintas naudojant supergardelės
        tarpsluoksnį ir impulsinį auginimą, tokiu būdu gautas toks pats
        maksimalus VKN kaip ir darinyje be kontaktinio sluoksnio.
        Tiesinės rekombinacijos koeficientas augo palaipsniui nuo
        žadinimo intensyvumo dėl krūvininkų delokalizacijos.
        Pasinaudojus tokia priklausomybe, buvo sėkmingai sumodeliuotas
        VKN smukimas.
      References
/
          Nuorodos
        
        [1] S. Nakamura, GaN
        growth using GaN buffer layer, Jpn. J. Appl. Phys. 
30(10A),
        L1705 (1991), 
        
http://dx.doi.org/10.1143/JJAP.30.L1705
        [2] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Metalorganic
        vapor phase epitaxial growth of a high quality GaN film using an
        AlN buffer layer, Appl. Phys. Lett. 
48(5), 353–355
        (1986), 
        
http://dx.doi.org/10.1063/1.96549
        [3] A. Sakai, H. Sunakawa, and A. Usui, Defect structure in
        selectively grown GaN films with low threading dislocation
        density, Appl. Phys. Lett. 
71(5), 2259–2261 (1997), 
        
http://dx.doi.org/10.1063/1.120044
        [4] S.J. Leem, Y.C. Shin, K.C. Kim, E.H. Kim, Y.M. Sung, Y.
        Moon, S.M. Hwang, and T.G. Kim, The effect of the low-mole InGaN
        structure and InGaN/GaN strained layer superlattices on optical
        performance of multiple quantum well active layers, J. Cryst.
        Growth 
311(1), 103–106 (2008), 
        
http://dx.doi.org/10.1016/j.jcrysgro.2008.10.047
        [5] S.P. Chang, C.H. Wang, C.H. Chiu, J.C. Li, Y.S. Lu, Z.Y. Li,
        H.C. Yang, H.C. Kuo, T.C. Lu, and S.C. Wang, Characteristics of
        efficiency droop in GaN-based light emitting diodes with an
        insertion layer between the multiple quantum wells and n-GaN
        layer, Appl. Phys. Lett. 
97(25), 251114 (2010), 
        
http://dx.doi.org/10.1063/1.3531957
        [6] W.V. Lundin, A.E. Nikolaeva, A.V. Sakharova, E.E. Zavarina,
        G.A. Valkovskiy, M.A. Yagovkina, S.O. Usov, N.V. Kryzhanovskaya,
        V.S. Sizov, P.N. Brunkov, A.L. Zakgeim, A.E. Cherniakov, N.A.
        Cherkashin, M.J. Hytch, E.V. Yakovlev, D.S. Bazarevskiy, M.M.
        Rozhavskaya, and A.F. Tsatsulnikov, J. Cryst. Growth 
315(1),
        267–271 (2011), 
        
http://dx.doi.org/10.1016/j.jcrysgro.2010.09.043
        [7] T.C. Wen, S.J. Chang, C.T. Lee, W.C. Lai, and J.K. Sheu,
        Nitride-based LEDs with modulation-doped Al
0.12Ga
0.88N-GaN
        superlattice structures, IEEE Trans. Electron Dev. 
51(10),
        1743–1746 (2004), 
        
http://dx.doi.org/10.1109/TED.2004.835985
        [8] Y.J. Liu, T.Y. Tsai, C.H. Yen, L.Y. Chen, T.H. Tsai, and
        W.C. Liu, Characteristics of a GaN-based light-emitting diode
        with an inserted p-GaN/i-InGaN superlattice structure, IEEE J.
        Quantum Electron. 
46(4), 492–498 (2010), 
        
http://dx.doi.org/10.1109/JQE.2009.2037337
        [9] T. Jeong, H.J. Park, J.W. Ju, H.S. Oh, J.H. Baek, J.S. Ha,
        G.H. Ryiu, and H.Y. Ryu, High efficiency InGaN blue
        light-emitting diode with >4 W output power at 3 A, IEEE
        Photon. Technol. Lett. 
26(7), 649–652 (2014), 
        
http://dx.doi.org/10.1109/LPT.2014.2301874
        [10] M. Moseley, B. Gunning, J. Greenlee, J. Lowder, G.
        Namkoong, and W.A. Doolittle, Observation and control of the
        surface kinetics of InGaN for the elimination of phase
        separation, J. Appl. Phys. 
112(1), 014909 (2012), 
        
http://dx.doi.org/10.1063/1.4733347
        [11] N. Dietz, M. Alevli, V. Woods, M. Strassburg, H. Kang, and
        I.T. Ferguson, The characterization of InN growth under
        high-pressure CVD conditions, Phys. Status Solidi B 
242(15),
        2985–2994 (2005), 
        
http://dx.doi.org/10.1002/pssb.200562246
        [12] V. Woods and N. Dietz, InN growth by high-pressures
        chemical vapor deposition: Real-time optical growth
        characterization, Mater. Sci. Eng. B 
127(2–3), 239–250
        (2006), 
        
http://dx.doi.org/10.1016/j.mseb.2005.10.032
        [13] A. Kadys, T. Malinauskas, M. Dmukauskas, I. Reklaitis, K.
        Nomeika, V. Gudelis, R. Aleksiejūnas, P. Ščajev, S. Nargelas, S.
        Miasojedovas, and K. Jarašiūnas, Photoluminescence features and
        carrier dynamics in InGaN heterostructures with wide staircase
        interlayers and differently shaped quantum wells, Lith. J. Phys.
        
54(3), 187–198 (2014), 
        
http://dx.doi.org/10.3952/physics.v54i3.2959
        [14] A. Kadys, T. Malinauskas, T. Grinys, M. Dmukauskas, J.
        Mickevičius, J. Aleknavičius, R. Tomašiūnas, A. Selskis, R.
        Kondrotas, S. Stanionytė, H. Lugauer, and M. Strassburg, Growth
        of InN and In-rich InGaN layers on GaN templates by pulsed
        metalorganic chemical vapor deposition, J. Electron. Mater. 
44(1),
        188–193 (2015), 
        
http://dx.doi.org/10.1007/s11664-014-3494-6
        [15] S. Leyre, E. Coutino-Gonzalez, J.J. Joos, J. Ryckaert, Y.
        Meuret, D. Poelman, P.F. Smet, G. Durinck, J. Hofkens, G.
        Deconinck, and P. Hanselaer, Absolute determination of
        photoluminescence quantum efficiency using an integrating sphere
        setup, Rev. Sci. Instrum. 
85(12), 123115 (2014), 
        
http://dx.doi.org/10.1063/1.4903852
        [16] S. Valdueza-Felip, E. Bellet-Amalric, A. Núñez-Cascajero,
        Y. Wang, M.-P. Chauvat, P. Ruterana, S. Pouget, K. Lorenz, E.
        Alves, and E. Monroy, High In-content InGaN layers synthesized
        by plasma-assisted molecular-beam epitaxy: Growth conditions,
        strain relaxation, and In incorporation kinetics, J. Appl. Phys.
        
116(23), 233504 (2014), 
        
http://dx.doi.org/10.1063/1.4903944
        [17] S. Park, T. Chung, J.H. Baek, and D. Ahn, Reduction of
        efficiency droop in green strain-compensated InGaN/InGaN
        light-emitting diodes grown on InGaN substrate, Jpn. J. Appl.
        Phys. 
54(2), 022101 (2015), 
        
http://dx.doi.org/10.7567/JJAP.54.022101
        [18] Y.L. Li, Y.R. Huang, and Y.H. Lai, Efficiency droop
        behaviors of InGaN∕GaN multiple-quantum-well light-emitting
        diodes with varying quantum well thickness, App. Phys. Lett. 
91(18),
        181113 (2007), 
        
http://dx.doi.org/10.1063/1.2805197
        [19] G. Sun, G. Xu, Y.J. Ding, H. Zhao, G. Liu, J. Zhang, and N.
        Tansu, Investigation of fast and slow decays in InGaN/GaN
        quantum wells, Appl. Phys. Lett. 
99(8), 081104 (2011), 
        
http://dx.doi.org/10.1063/1.3627166
        [20] M.J. Davies, T.J. Badcock, P. Dawson, M.J. Kappers, R.A.
        Oliver, and C.J. Humphreys, High excitation carrier density
        recombination dynamics of InGaN/GaN quantum well structures:
        Possible relevance to efficiency droop, Appl. Phys. Lett. 
102(2),
        022106 (2013), 
        
http://dx.doi.org/10.1063/1.4781398
        [21] N.I. Bochkareva, Y.T. Rebane, and Y.G. Shreter, Efficiency
        droop and incomplete carrier localization in InGaN/GaN quantum
        well light-emitting diodes, Appl. Phys. Lett. 
103(19),
        191101 (2013), 
        
http://dx.doi.org/10.1063/1.4828780
        [22] R. Aleksiejūnas, K. Nomeika, S. Miasojedovas, S. Nargelas,
        T. Malinauskas, K. Jarašiūnas, Ö. Tuna, and M. Heuken, Carrier
        dynamics in blue and green emitting InGaN MQWs, Phys. Status
        Solidi B 
252(5) 977–982 (2015), 
        
http://dx.doi.org/10.1002/pssb.201451583
        [23] J. Piprek, Efficiency droop in nitride-based light-emitting
        diodes, Phys. Status Solidi A 
207(10), 2217–2225 (2010),
        
        
http://dx.doi.org/10.1002/pssa.201026149
        [24] J. Hader, J.V. Moloney, and S.W. Koch, Density-activated
        defect recombination as a possible explanation for the
        efficiency droop in GaN-based diodes, Appl. Phys. Lett. 
96(22),
        221106 (2010), 
        
http://dx.doi.org/10.1063/1.3446889
        [25] T. Malinauskas, A. Kadys, T. Grinys, S. Nargelas, R.
        Aleksiejūnas, S. Miasojedovas, J. Mickevičius, R. Tomašiūnas, K.
        Jarašiūnas, M. Vengris, S. Okur, V. Avrutin, X. Li, F. Zhang, Ü.
        Özgür, and H. Morkoç, Impact of carrier localization,
        recombination, and diffusivity on excited state dynamics in
        InGaN/GaN quantum wells, Proc. SPIE 
8262, 82621S–1
        (2012), 
        
http://dx.doi.org/10.1117/12.906488
        [26] R. Aleksiejūnas, K. Gelžinytė, S. Nargelas, K. Jarašiūnas,
        M. Vengris, E.A. Armour, D.P. Byrnes, R.A. Arif, S.M. Lee, and
        G.D. Papasouliotis, Diffusion-driven and excitation-dependent
        recombination rate in blue InGaN/GaN quantum well structures,
        Appl. Phys. Lett. 
104(2), 022114 (2014), 
        
http://dx.doi.org/10.1063/1.4862026
        [27] T. Sadi, P. Kivisaari, J. Oksanen, and J. Tulkki, On the
        correlation of the Auger generated hot electron emission and
        efficiency droop in III-N light-emitting diodes, Appl. Phys.
        Lett. 
105(9), 091106 (2014), 
        
http://dx.doi.org/10.1063/1.4894862
        [28] A. David and M.J. Grundmann, Droop in InGaN light-emitting
        diodes: A differential carrier lifetime analysis, Appl. Phys.
        Lett. 
96(10), 103504 (2010), 
        
http://dx.doi.org/10.1063/1.3330870
        [29] J.I. Shim, H.S. Kim, D.S. Shin, and H.Y. Yoo, An
        explanation of efficiency droop in InGaN-based light emitting
        diodes: Saturated radiative recombination rate at randomly
        distributed In-rich active areas, J. Korean Phys. Soc. 
58(3),
        503–508 (2011), 
        
http://dx.doi.org/10.3938/jkps.58.503
        [30] R. Aleksiejūnas, P. Ščajev, S. Nargelas, T. Malinauskas, A.
        Kadys, and K. Jarašiūnas, Impact of diffusivity to carrier
        recombination rate in nitride semiconductors: from bulk GaN to
        (In, Ga)N quantum wells, Jpn. J. Appl. Phys. 
52(8 S),
        08JK01 (2013), 
        
http://dx.doi.org/10.7567/JJAP.52.08JK01
        [31] F. Hitzel, G. Klewer, S. Lahmann, U. Rossow, and A.
        Hangleiter, Localized high-energy emissions from the vicinity of
        defects in high-efficiency Ga
xIn
1–xN∕GaN
        quantum wells, Phys. Rev. B 
72, 081309(R) (2005), 
        
http://dx.doi.org/10.1103/PhysRevB.72.081309
        [32] R. Aleksiejūnas, M. Sūdžius, T. Malinauskas, J. Vaitkus, K.
        Jarašiūnas, and S. Sakai, Determination of free carrier bipolar
        diffusion coefficient and surface recombination velocity of
        undoped GaN epilayers, Appl. Phys. Lett. 
83(6),
        1157–1159 (2003), 
        
http://dx.doi.org/10.1063/1.1599036
        [33] D.M. Graham, P. Dawson, Y. Zhang, P.M.F.J. Costa, M.J.
        Kappers, C.J. Humphreys, and E.J. Thrush, The effect of a
        Mg-doped GaN cap layer on the optical properties of InGaN/AlGaN
        multiple quantum well structures, Phys. Status Solidi B 
3(6),
        2005–2008 (2006), 
        
http://dx.doi.org/10.1002/pssc.200565246