[PDF]    http://dx.doi.org/10.3952/physics.v55i4.3219

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 243248 (2015)


EFFECT OF INDIRECT INTERBAND TRANSITIONS ON TERAHERTZ CONDUCTIVITY IN “DECORATED” GRAPHENE BILAYER HETEROSTRUCTURES
Victor Ryzhiia,b, Taiichi Otsujib, Maxim Ryzhiia, Vladimir Mitinc, and Michael S. Shure
aResearch Institute for Electrical Communication,Tohoku University, Sendai 980-8577, Japan
E-mail: v-ryzhii@riec.tohoku.ac.jp
bInstitute of Ultra High Frequency Semiconductor Electronics of RAS and Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University, Moscow 111005, Russia
cDepartment of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580, Japan
dDepartment of Electrical Engineering, University at Buffalo, SUNY, Buffalo, New York 1460-1920, USA
eDepartments of Electrical, Electronics, and Systems Engineering and Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Received 31 August 2015; accepted 29 September 2015

We demonstrate that the indirect interband generation of photons in the optically or injection pumped graphene bilayer (GBL) heterostructures with an array of metal particles (GBLs “decorated” by metal particles) with population inversion can surpass their intraband (Drude) absorption. This can result in rather large absolute values of the negative dynamic terahertz (THz) conductivity in a wide range of frequencies at room temperature. This effect enables the creation of novel THz lasers based on the decorated GBLs.
Keywords: graphene bilayer, population inversion, array of metal particles, terahertz radiation
PACS: 72.80.Vp, 72.30.+q, 72.10.Fk

NETIESIOGINIŲ TARPJUOSTINIŲ ŠUOLIŲ ĮTAKA TERAHERCINIAM LAIDUMUI „DEKORUOTUOSE“ DVISLUOKSNIO GRAFENO HETERODARINIUOSE

Victor Ryzhiia,b, Taiichi Otsujib, Maxim Ryzhiia, Vladimir Mitinc, Michael S. Shure
aTohoku universitetas, Sendajus, Japonija
bMaskvos valstybinis Baumano technikos universitetas, Maskva, Rusija
cAizu universitetas, Aizu-Wakamatsu, Japonija
dBufalo universitetas, Bufalas, Niujorko valstija, JAV
eRensselaer politechnikos institutas, Troja, Niujorko valstija, JAV

References / Nuorodos

[1] V. Ryzhii, M. Ryzhii, and T. Otsuji, Negative dynamic conductivity of graphene with optical pumping, J. Appl. Phys. 101, 083114 (2007),
http://dx.doi.org/10.1063/1.2717566
[2] M. Ryzhii and V. Ryzhii, Injection and population inversion in electrically induced p–n junction in graphene with split gates, Jpn. J. Appl. Phys. 46, L151–L153 (2007),
http://dx.doi.org/10.1143/JJAP.46.L151
[3] V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, Toward the creation of terahertz graphene injection laser, J. Appl. Phys. 110, 094503 (2011),
http://dx.doi.org/10.1063/1.3657853
[4] V. Ya. Aleshkin, A.A. Dubinov, and V. Ryzhii, Terahertz laser based on optically pumped graphene: model and feasibility of realization, JETP Lett. 89, 63–67 (2009),
http://dx.doi.org/10.1134/S0021364009020039
[5] S. Boubanga-Tombet, S. Chan, A. Satou, T. Otsuji, and V. Ryzhii, Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature, Phys. Rev. B 85, 035443 (2012),
http://dx.doi.org/10.1103/PhysRevB.85.035443
[6] T. Otsuji, S. Boubanga-Tombet, A. Satou, H. Fukidome, M. Suemitsu, E. Sano, V. Popov, M. Ryzhii, and V. Ryzhii, Graphene-based devices in terahertz science and technology, J. Phys. D 45, 303001 (2012),
http://dx.doi.org/10.1088/0022-3727/45/30/303001
[7] T. Li, L. Luo, M. Hupalo, J. Zhang, M.C. Tringides, J. Schmalian, and J. Wang, Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene, Phys. Rev. Lett. 108, 167401 (2012),
http://dx.doi.org/10.1103/PhysRevLett.108.167401
[8] Y. Takatsuka, K. Takahagi, E. Sano, V. Ryzhii, and T. Otsuji, Gain enhancement in graphene terahertz amplifiers with resonant structures, J. Appl. Phys. 112, 033103 (2012),
http://dx.doi.org/10.1063/1.4742998
[9] T. Watanabe, T. Fukushima, Y. Yabe, S.A. Boubanga Tombet, A. Satou, A.A. Dubinov, V.Ya Aleshkin, V. Mitin, V. Ryzhii, and T. Otsuji, The gain enhancement effect of surface plasmon polaritons on terahertz stimulated emission in optically pumped monolayer graphene, New J. Phys. 15, 075003 (2013),
http://dx.doi.org/10.1088/1367-2630/15/7/075003
[10] T. Winzer, E. Maric, and A. Knorr, Microscopic mechanism for transient population inversion and optical gain in graphene, Phys. Rev. B 87, 165413 (2013),
http://dx.doi.org/10.1103/PhysRevB.87.165413
[11] I. Gierz, J.C. Petersen, M. Mitrano, C. Cacho, I.C. Edmond Turcu, E. Springate, A. Stohr, A. Kohler, U. Starke, and A. Cavalleri, Snapshots of non-equilibrium Dirac carrier distributions in graphene, Nat. Mater. 12, 1119–1124 (2013),
http://dx.doi.org/10.1038/nmat3757
[12] S. Kar, D.R. Mohapatra, E. Freysz, and A.K. Sood, Tuning photoinduced terahertz conductivity in monolayer graphene: Optical-pump terahertz-probe spectroscopy, Phys. Rev. B 90, 165420 (2014),
http://dx.doi.org/10.1103/PhysRevB.90.165420
[13] R.R. Hartmann, J. Kono, and M.E. Portnoi, Terahertz science and technology of carbon nanomaterials, Nanotechnology 25, 322001 (2014),
http://dx.doi.org/10.1088/0957-4484/25/32/322001
[14] T. Otsuji, S. Boubanga-Tombet, A. Satou, M. Suemitsu, and V. Ryzhii, Spectroscopy study on ultrafast carrier dynamics and terahertz amplified stimulated emission in optically pumped graphene, J. Infrared Millim. Terahertz Waves 33, 825–838 (2012),
http://dx.doi.org/10.1007/s10762-012-9908-8
[15] I. Gierz, M. Mitrano, J.C. Petersen, C. Cacho, I.C.E. Turcu, E. Springate, A. Støhr, A. Køhler, U. Starke, and A. Cavalleri, Population inversion in monolayer and bilayer graphene, J. Phys. Cond. Mat. 27, 164204 (2015),
http://dx.doi.org/10.1088/0953-8984/27/16/164204
[16] A.A. Dubinov, V. Ya. Aleshkin, M. Ryzhii, T. Otsuji, and V. Ryzhii, Terahertz laser with optically pumped graphene layers and Fabry–Perot resonator, Appl. Phys. Express 2, 092301 (2009),
http://dx.doi.org/10.1143/APEX.2.092301
[17] V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A.A. Dubinov, and V.Ya. Aleshkin, Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures, J. Appl. Phys. 106, 084507 (2009),
http://dx.doi.org/10.1063/1.3247541
[18] V. Ryzhii, A.A. Dubinov, T. Otsuji, V. Mitin, and M.S. Shur, Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides, J. Appl. Phys. 107, 054505 (2010),
http://dx.doi.org/10.1063/1.3327212
[19] F. Rana, Graphene terahertz plasmon oscillator, IEEE Trans. Nanotechnol. 7, 91–99 (2008),
http://dx.doi.org/10.1109/TNANO.2007.910334
[20] A.A. Dubinov, V.Ya. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, Terahertz surface plasmons in optically pumped graphene structures, J. Phys. Condens. Matter. 23, 145302 (2011),
http://dx.doi.org/10.1088/0953-8984/23/14/145302
[21] V.V. Popov, O.V. Polischuk, A.R. Davoyan, V. Ryzhii, T. Otsuji, and M.S. Shur, Plasmonic terahertz lasing in an array of graphene nanocavities, Phys. Rev. B 86, 195437 (2012),
http://dx.doi.org/10.1103/PhysRevB.86.195437
[22] A. Tredicucci and M.S. Vitiello, Device concepts for graphene-based terahertz photonics, IEEE J. Sel. Top. Quantum Electron. 20, 8500109 (2014),
http://dx.doi.org/10.1109/JSTQE.2013.2271692
[23] D. Svintsov, V. Ryzhii, and T. Otsuji, Negative dynamic Drude conductivity in pumped graphene, Appl. Phys. Express 7, 115101 (2014),
http://dx.doi.org/10.7567/APEX.7.115101
[24] D. Svintsov, T. Otsuji, V. Mitin, M.S. Shur, and V. Ryzhii, Negative terahertz conductivity in disordered graphene bilayers with pupulation inversion, Appl. Phys. Lett. 106, 113501 (2015),
http://dx.doi.org/10.1063/1.4915314
[25] J. Požela, Physics of High-Speed Transistors (Plenum Press, New York, 1993),
http://dx.doi.org/10.1007/978-1-4899-1242-8
[26] A. Shik, Quantum Wells: Physics and Electronics of Two-Dimensional Systems (World Scientific, Singapore, 1997),
http://dx.doi.org/10.1142/3608
[27] T. Stauber, G. Gomez-Santos, and F. Javier Garcia de Abajo, Extraordinary absorption of decorated undoped graphene, Phys. Rev. Lett. 112, 077401 (2014),
http://dx.doi.org/10.1103/PhysRevLett.112.077401
[28] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F.P. Garcia de Arquer, F. Gatti, and F.H.L. Koppens, Hybrid graphene quantum dot phototransistors with ultrahigh gain, Nature Nanotechnol. 7, 363–368 (2012),
http://dx.doi.org/10.1038/nnano.2012.60
[29] E. McCann, D.S.L. Abergel, and V.I. Fal’ko, The low energy electronic band structure of bilayer, Eur. Phys. J. Special Topics 148, 91–103 (2007),
http://dx.doi.org/10.1140/epjst/e2007-00229-1
[30] L.M. Zhang, Z.Q. Li, D.N. Basov, M.M. Fogler, Z. Hao, and M.C. Martin, Determination of the electronic structure of bilayer graphene from infrared spectroscopy, Phys, Rev. B 78, 235408 (2008),
http://dx.doi.org/10.1103/PhysRevB.78.235408
[31] L.A. Falkovsky and S.S. Pershoguba, Optical far-infrared properties of a graphene monolayer and multilayer, Phys. Rev. B 76, 1534104 (2007),
http://dx.doi.org/10.1103/PhysRevB.76.153410
[32] E.H. Hwang and S. Das Sarma, Screening, Kohn anomaly, Friedel oscillation, and RKKY interaction in bilayer graphene, Phys. Rev. Lett. 101, 156802 (2008),
http://dx.doi.org/10.1103/PhysRevLett.101.156802
[33] L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1960),
http://www.amazon.co.uk/Electrodynamics-Continuous-Media-Theoretical-Physics/dp/0750626348/