[PDF]    http://dx.doi.org/10.3952/physics.v55i4.3227

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 297304 (2015)


THE EFFECT OF LOW TEMPERATURE COATING AND ANNEALING ON STRUCTURAL AND OPTICAL PROPERTIES OF CdSe/CdS CORE/SHELL QDs
Maya Isarov, N. Grumbach, Georgy I. Maikov, Jenya Tilchin, Youngjin Jang, Aldona Sashchiuk, and Efrat Lifshitz
Solid State Institute, Russell Berrie Nanotechnology Institute, Nancy and Stephen Grand Technion Energy Program, Schulich Faculty of Chemistry, Technion, 3200003 Haifa, Israel
E-mail: chaldona@tx.technion.ac.il; ssefrat@tx.technion.ac.il

Received 31 August 2015; accepted 29 September 2015

This paper presents the optical temperature dependent properties, over a wide range of temperatures from 4 to 300 K, of new CdSe/CdS core/shell colloidal quantum dots (QDs) with varying shell thickness coated and annealed at low temperature. It was demonstrated that low temperature coating and annealing processes enhanced the photoluminescence (PL) quantum yield accompanied by variation in the QDs structure, formation of an alloyed interface layer, suppression of the number of defects at the CdSe/CdS interface, band gap energy red-shift, narrowing of CdS longitudinal optical phonon band, and decrease of the PL inhomogeneous broadening parameter.
Keywords: CdSe/CdS core/shell structures, colloidal quantum dots, excitons, photoluminescence
PACS: 73.21.La, 72.22.-f, 73.61.Ga, 73.90.tf

ŽEMOJE TEMPERATŪROJE VYKDOMO PADENGIMO IR GRŪDINIMO ĮTAKA  CdSe/CdS BRANDUOLIO/ APVALKALO KVANTINIŲ TAŠKŲ STRUKTŪRINĖMS IR OPTINĖMS SAVYBĖMS

Maya Isarov, N. Grumbach, Georgy I. Maikov, Jenya Tilchin, Youngjin Jang, Aldona Sashchiuk, Efrat Lifshitz
Izraelio Techniono technologijos institutas, Haifa, Izraelis

References / Nuorodos

[1] A.H. Mueller, M.A. Petruska, M. Achermann, D.J. Werder, E.A. Akhadov, D.D. Koleske, M.A. Hoffbauer, and V.I. Klimov, Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers, Nano Lett. 5, 1039–1044 (2005),
http://dx.doi.org/10.1021/nl050384x
[2] M.J. Bowers, J.R. McBride, and S.J. Rosenthal, White-light emission from magic-sized cadmium selenide nanocrystals, J. Am. Chem. Soc. 127, 15378–15379 (2005),
http://dx.doi.org/10.1021/ja055470d
[3] L.G. Wang, S.J. Pennycook, and S.T. Pantelides, The role of the nanoscale in surface reactions: CO2 on CdSe, Phys. Rev. Lett. 89, 075506 (2002),
http://dx.doi.org/10.1103/PhysRevLett.89.075506
[4] J.P. Zimmer, S. Kim, S. Ohnishi, E. Tanaka, J.V. Frangioni, and M.G. Bawendi, Size series of small indium arsenide–zinc selenide core–shell nanocrystals and their application to in vivo imaging, J. Am. Chem. Soc. 128, 2526–2527 (2006),
http://dx.doi.org/10.1021/ja0579816
[5] D.L. Klein, R. Roth, A.K.L. Lim, A.P. Alivisatos, and P.L. McEuen, A single-electron transistor made from a cadmium selenide nanocrystal, Nature 389, 699–701 (1997),
http://dx.doi.org/10.1038/39535
[6] X.Y. Wang, L.H. Qu, J.Y. Zhang, X.G. Peng, and M. Xiao, Surface-related emission in highly luminescent CdSe quantum dots, Nano Lett. 3, 1103–1106 (2003),
http://dx.doi.org/10.1021/nl0342491
[7] J.J. Li, Y.A. Wang, W. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, and X. Peng, Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction, J. Am. Chem. Soc. 125, 12567–12575 (2003),
http://dx.doi.org/10.1021/ja0363563
[8] X. Peng, M.C. Schlamp, A.V. Kadavanich, and A.P. Alivisatos, Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility, J. Am. Chem. Soc. 119, 7019–7029 (1997),
http://dx.doi.org/10.1021/ja970754m
[9] I. Mekis, D.V. Talapin, A. Kornowski, M. Haase, and H. Weller, One-pot synthesis of highly luminescent CdSe/CdS core/shell nanocrystals via organometallic and “greener” chemical approaches, J. Phys. Chem. B 107, 7454–7462 (2003),
http://dx.doi.org/10.1021/jp0278364
[10] U. Banin, M. Bruchez, A.P. Alivisatos, T. Ha, S. Weiss, and D.S. Chemla, Evidence for a thermal contribution to emission intermittency in single CdSe/CdS core/shell nanocrystals, J. Chem. Phys. 110, 1195–1201 (1999),
http://dx.doi.org/10.1063/1.478161
[11] B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, and M.G. Bawendi, (CdSe)ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites, J. Phys. Chem. B 101, 9463–9475 (1997),
http://dx.doi.org/10.1021/jp971091y
[12] M.A. Hines and P. Guyot-Sionnest, Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals, J. Phys. Chem. 100, 468–471 (1996),
http://dx.doi.org/10.1021/jp9530562
[13] R.G. Xie, U. Kolb, J.X. Li, T. Basche, and A. Mews, Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals, J. Am. Chem. Soc. 127, 7480–7488 (2005),
http://dx.doi.org/10.1021/ja042939g
[14] C.B. Murray, D.J. Norris, and M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc. 115, 8706–8715 (1993),
http://dx.doi.org/10.1021/ja00072a025
[15] D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, and H. Weller, Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine–trioctylphosphine oxide–trioctylphospine mixture, Nano Lett. 1, 207–211 (2001),
http://dx.doi.org/10.1021/nl0155126
[16] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A.P. Alivisatos, Shape control of CdSe nanocrystals, Nature 404, 59–61 (2000),
http://dx.doi.org/10.1038/35003535
[17] K. Boldt, N. Kirkwood, G.A. Beane, and P. Mulvaney, Synthesis of highly luminescent and photo-stable, graded shell CdSe/CdxZn1-xS nanoparticles by in situ alloying, Chem. Mater. 25, 4731–4738 (2013),
http://dx.doi.org/10.1021/cm402645r
[18] O. Chen, J. Zhao, V.P. Chauhan, J. Cui, C. Wong, D.K. Harris, H. Wei, H. Han, D. Fukumura, R.K. Jain, and M.G. Bawendi, Compact high-quality CdSe-CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking, Nat. Mater. 12, 445–451 (2013),
http://dx.doi.org/10.1038/nmat3539
[19] N. Tschirner, H. Lange, A. Schliwa, A. Biermann, C. Thomsen, K. Lambert, R. Gomes, and Z. Hens, Interfacial alloying in CdSe/CdS heteronanocrystals: a Raman spectroscopy analysis, Chem. Mater. 24, 311–318 (2011),
http://dx.doi.org/10.1021/cm202947n
[20] W.K. Bae, L.A. Padilha, Y. Park, H. McDaniel, I. Robel, J.M. Pietryga, and V.I. Klimov, Controlled alloying of the core–shell interface in CdSe/CdS quantum dots for suppression of auger recombination, ACS Nano 7, 3411–3419 (2013),
http://dx.doi.org/10.1021/nn4002825
[21] F. Todescato, A. Minotto, R. Signorini, J.J. Jasieniak, and R. Bozio, Investigation into the heterostructure interface of CdSe-based core–shell quantum dots using surface-enhanced Raman spectroscopy, ACS Nano 7, 6649–6657 (2013),
http://dx.doi.org/10.1021/nn402022z
[22] G.E. Cragg and A.L. Efros, Suppression of Auger processes in confined structures, Nano Lett. 10, 313–317 (2010),
http://dx.doi.org/10.1021/nl903592h
[23] R. Vaxenburg and E. Lifshitz, Alloy and heterostructure architectures as promising tools for controlling electronic properties of semiconductor quantum dots, Phys. Rev. B 85, 075304 (2012),
http://dx.doi.org/10.1103/PhysRevB.85.075304
[24] J.I. Climente, J.L. Movilla, and J. Planelles, Auger recombination suppression in nanocrystals with asymmetric electron–hole confinement, Small 8, 754–759 (2012),
http://dx.doi.org/10.1002/smll.201101740
[25] W. Nan, Y. Niu, H. Qin, F. Cui, Y. Yang, R. Lai, W. Lin, and X. Peng, Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: synthesis and structure-dependent optical properties, J. Am. Chem. Soc., 134(48), 19685 (2012),
http://dx.doi.org/10.1021/ja306651x
[26] N. Grumbach, R.K. Capek, E. Tilchin, A. Rubin-Brusilovski, J. Yang, Y. Ein-Eli, and E. Lifshitz, Comprehensive route to the formation of alloy interface in core/shell colloidal quantum dots, J. Phys. Chem. C 119, 12749–12756 (2015),
http://dx.doi.org/10.1021/acs.jpcc.5b03086
[27] V.M. Dzhagan, M.Y. Valakh, A.E. Raevskaya, A.L. Stroyuk, S.Y. Kuchmiy, and D.R.T. Zahn, Resonant Raman scattering study of CdSe nanocrystals passivated with CdS and ZnS, Nanotechnology 18, 285701 (2007),
http://dx.doi.org/10.1088/0957-4484/18/28/285701
[28] V.M. Dzhagan, M.Y. Valakh, A.G. Milekhin, N.A. Yeryukov, D.R.T. Zahn, E. Cassette, T. Pons, and B. Dubertret, Raman- and IR-active phonons in CdSe/CdS core/shell nanocrystals in the presence of interface alloying and strain, J. Phys. Chem. C 117, 18225–18233 (2013),
http://dx.doi.org/10.1021/jp4046808
[29] K. Gong and D.F. Kelley, Lattice strain limit for uniform shell deposition in zincblende CdSe/CdS quantum dots, J. Phys. Chem. Lett. 6, 1559–1562 (2015),
http://dx.doi.org/10.1021/acs.jpclett.5b00566
[30] G. Zaiats, A. Shapiro, D. Yanover, Y. Kauffmann, A. Sashchiuk, and E. Lifshitz, Optical and electronic properties of nonconcentric PbSe/CdSe colloidal quantum dots, J. Phys. Chem. Lett. 6, 2444–2448 (2015),
http://dx.doi.org/10.1021/acs.jpclett.5b00498
[31] A. Minotto, F. Todescato, I. Fortunati, R. Signorini, J.J. Jasieniak, and R. Bozio, Role of core–shell interfaces on exciton recombination in CdSe–CdxZn1-xS quantum dots, J. Phys. Chem. C 118, 24117–24126 (2014),
http://dx.doi.org/10.1021/jp506778n
[32] F. Garcia-Santamaria, S. Brovelli, R. Viswanatha, J.A. Hollingsworth, H. Htoon, S.A. Crooker, and V.I. Klimov, Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core–shell interface, Nano Lett. 11, 687–693 (2011),
http://dx.doi.org/10.1021/nl103801e
[33] J. Mooney, M.M. Krause, J.I. Saari, and P. Kambhampati, Challenge to the deep-trap model of the surface in semiconductor nanocrystals, Phys. Rev. B 87, 081201 (2013),
http://dx.doi.org/10.1103/PhysRevB.87.081201
[34] M.M. Krause, J. Mooney, and P. Kambhampati, Chemical and thermodynamic control of the surface of semiconductor nanocrystals for designer white light emitters, ACS Nano 7, 5922–5929 (2013),
http://dx.doi.org/10.1021/nn401383t
[35] M.R. Salvador, M.W. Graham, and G.D. Scholes, Exciton–phonon coupling and disorder in the excited states of CdSe colloidal quantum dots, J. Chem. Phys. 125, 184709 (2006),
http://dx.doi.org/10.1063/1.2363190
[36] T.J. Liptay, L.F. Marshall, P.S. Rao, R.J. Ram, and M.G. Bawendi, Anomalous stokes shift in CdSe nanocrystals, Phys. Rev. B 76, 155314 (2007),
http://dx.doi.org/10.1103/PhysRevB.76.155314