THE DUAL PROPERTY OF NUMBER AND
        VELOCITY FLUCTUATIONS OF CHARGE CARRIERS IN A MACROSCOPIC
        CONDUCTOR UNDER THERMODYNAMIC EQUILIBRIUM CONDITIONS
      Lino Reggiani
a,c, Eleonora Alfinito
b,c, and
      Tilmann Kuhn
d
      aDipartimento di Matematica e Fisica, “Ennio de
        Giorgi”, Università del Salento, via Monteroni, I – 73100 Lecce,
        Italy
      E-mail: lino.reggiani@unisalento.it
      
bDipartimento di Ingegneria dell’ Innovazione,
        Universit`a del Salento, via Monteroni, I-73100 Lecce, Italy
      cCNISM, Via della Vasca Navale, 84 – 00146 Roma,
        Italy
      dInstitut für Festkörpertheorie, Universität
          Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
          
         Received 20 September 2015; accepted 29 September 2015
      
      
        Fluctuation-dissipation relations are
          complemented by relating the macrovariables conductance and
          resistance, that describe dissipation, to the microvariables
          variance of carrier number and drift velocity fluctuations,
          that are the noise sources for constant voltage and constant
          current operation conditions, respectively. Thermal
          equilibrium implies a relationship between these two noise
          sources which follows from the reciprocity property of
          conductance and resistance. The boundary conditions of the
          measurement select the proper microscopic source of
          fluctuations to be related to the dissipation. An important
          consequence is that the source of shot noise, being associated
          with fluctuations of the carrier number inside the sample, is
          already present under equilibrium conditions, while the time
          scale of the source changes from an effective transport time
          to a current transit time when going from equilibrium to
          nonequilibrium conditions.
          
         Keywords: noise,
        conductors, statistics
        
PACS: 05.40.-a,
        05.40.ca, 72.70.+m
      
 
      
      
        
        
          
          
          
          KRŪVININKŲ SKAIČIAUS IR GREIČIO
            FLIUKTUACIJŲ DUALUMAS MAKROSKOPINIAME LAIDININKE
            TERMODINAMINĖS PUSIAUSVYROS SĄLYGOMIS
        
      
        
        
        
        
        
        Lino Reggiania,c, Eleonora Alfinitob,c,
        Tilmann Kuhnd
        aSalento universiteto Matematikos ir fizikos
          departamentas, Lečė, Italija
        bSalento universiteto Inžinerijos ir inovacijų
          departamentas, Lečė, Italija
        cNacionalinis tarpuniversitetinis fizinių
          medžiagos mokslų konsorciumas CNISM, Roma, Italija
        dMiunsterio universitetas, Miunsteris,
          Vokietija
          
        
      References
/
          Nuorodos
        
        [1] J.B. Johnson,
        Thermal agitation of electricity in conductors, Phys. Rev. 
32,
        97–109 (1928),
        
http://dx.doi.org/10.1103/PhysRev.32.97
        [2] H. Nyquist, Thermal agitation of electric charge in
        conductors, Phys. Rev. 
32, 110–113 (1928),
        
http://dx.doi.org/10.1103/PhysRev.32.110
        [3] H.B. Callen and T.A. Welton, Irreversibility and generalized
        noise, Phys. Rev. 
83, 34–40 (1951),
        
http://dx.doi.org/10.1103/PhysRev.83.34
        [4] W. Schottky, Über spontane Stromschwankungen in
        verschiedenen Elektrizitätsleitern, Ann. Phys. 
57,
        541–567 (1918),
        
http://dx.doi.org/10.1002/andp.19183622304
        [5] Ya.M. Blanter and M. Büttiker, Shot noise in mesoscopic
        conductors, Phys. Rep. 
336, 1–99 (2000),
        
http://dx.doi.org/10.1016/S0370-1573(99)00123-4
        [6] C. Beenakker and C. Schönenberger, Quantum shot noise, Phys.
        Today 
56, 37–42 (2003),
        
http://dx.doi.org/10.1063/1.1583532
        [7] S. Gantsevich, R. Katilius, and V. Gurevich, Theory of
        fluctuations in a nonequilibrium electron gas, Riv. Nuovo
        Cimento 
2, 1–87 (1979),
        
http://dx.doi.org/10.1007/BF02724353
        [8] J. Dunning-Davis, Particle number fluctuations, N. Cimento 
57B,
        315–316 (1968),
        
http://dx.doi.org/10.1007/BF02710203
        [9] M. Lax, Fluctuations from the nonequilibrium steady state,
        Rev. Mod. Phys. 
32, 25–64 (1960),
        
http://dx.doi.org/10.1103/RevModPhys.32.25
        [10] A. Greiner, L. Reggiani, T. Kuhn, and L. Varani, Carrier
        kinetics from diffusive to ballistic regime: Linear response
        near thermodynamic equilibrium, Semicond. Sci. Technol. 
15,
        1071–1081 (2000),
        
http://dx.doi.org/10.1088/0268-1242/15/11/311
        [11] R. Kubo, The fluctuation–dissipation theorem, Rep. Prog.
        Phys. 
29, 255–284 (1966),
        
http://dx.doi.org/10.1088/0034-4885/29/1/306
        [12] G. Gomila, C. Pennetta, L. Reggiani, M. Sampietro, G.
        Ferrari, and G. Bertuccio, Shot noise in linear macroscopic
        resistors, Phys. Rev. Lett. 
92, 226601 (2004),
        
http://dx.doi.org/10.1103/PhysRevLett.92.226601
        [13] T. Kuhn, L. Reggiani, and L. Varani, Nonequilibrium noise
        in mesoscopic systems: Effects of transit times, Semicond. Sci.
        Technol. 
7, B495–B497 (1992),
        
http://dx.doi.org/10.1088/0268-1242/7/3B/129