ELEKTRONŲ PERNAŠOS TŪRINIUOSE
            INGAAS IR InAs KAMBARIO TEMPERATŪROJE SAVYBIŲ APŽVALGA
        
      References
/
          Nuorodos
        
        [1] 
Nanoelectronics
          and Information Technology, ed. R. Waser (Wiley-VCH Verlag
        GmbH & Co. KGaA, Weinheim, 2003),
        
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527409270.html
        [2] T. Suemitsu, T. Ishii, H. Yokoyama, Y. Umeda, T. Enoki, Y.
        Ishii, and T. Tamamura, 30-nm-gate InAlAs/InGaAs HEMTs
        lattice-matched to InP substrates, Tech. Dig. IEDM, 223–226
        (1998), 
        
http://dx.doi.org/10.1109/IEDM.1998.746339
        [3] T. Suemitsu, H. Yokoyama, T. Ishii, T. Enoki, G. Meneghesso,
        and E. Zanoni, 30-nm two-step recess gate InP-based
        InAlAs/InGaAs HEMTs, IEEE Trans. Electron Dev. 
49, 1694
        (2002),
        
http://dx.doi.org/10.1109/TED.2002.803646
        [4] K. Shinohara, Y. Yamashita, A. Endoh, I. Watanabe, K.
        Hikosaka, T. Matsui, T. Mimura, and S. Hiyamizu, 547-GHz ft In
0.7Ga
0.3As-In
0.52Al
0.48As
        HEMTs with reduced source and drain resistance, IEEE Electron
        Device Lett. 
25, 241 (2004),
        
http://dx.doi.org/10.1109/LED.2004.826543
        [5] K. Shinohara, Y. Yamashita, A. Endoh, I. Watanabe, K.
        Hikosaka, T. Mimura, S. Hiyamizu, and T. Matsui, Nanogate
        InP-HEMT technology for ultrahigh-speed performance, in: 
Proceedings
          of 16th International Conference on Indium Phosphide and
          Related Materials, IEEE Catalog 04CH37589 (Kagoshima,
        Japan, 2004) p. 721,
        
          http://dx.doi.org/10.1109/ICIPRM.2004.1442827
        [6] B. Doyle, R. Arghavani, D. Barlage, M. Datta, S. Doczy, J.
        Kavalieros, A. Murthy, and R. Chau, Transistor elements for 30
        nm physical gate lengths and beyond, Intel Technol. J. 6, 42
        (2002),
        
[PDF]
        [7] R. Dingle, H.R. Stormer, A.C. Gossard, and W. Wiegmann,
        Electron mobilities in modulation-doped semiconductor
        heterojunction superlattices, J. Appl. Phys. 
33, 655
        (1978),
        
http://dx.doi.org/10.1063/1.90457
        [8] T. Mimura, K. Joshin, S. Hiyamizu, K. Kikusaka, and M. Abe,
        High electron mobility transistor logic, Jpn. J. Appl. Phys. 
20,
        L598–600 (1981),
        
http://dx.doi.org/10.1143/JJAP.20.L598
        [9] J.H. Marsh, Effects of compositional clustering on electron
        transport in In
0.53Ga
0.47As, Appl. Phys.
        Lett. 
41, 732 (1982),
        
http://dx.doi.org/10.1063/1.93658
        [10] W. Knap, J. Łusakowski, F. Teppe, N. Dyakonova, and Y.
        Meziani, Terahertz generation and detection by plasma waves in
        nanometer gate high electron mobility transistors, Acta Phys.
        Pol. A 
107(1), 82 (2005),
        
http://przyrbwn.icm.edu.pl/APP/ABSTR/107/a107-1-9.html
        [11] W. Knap, J. Lusakowski, T. Parenty, S. Bollaeret, A. Cappy,
        and M. Shur, Terahertz emission by plasma waves in 60 nm gate
        high electron mobility transistors, Appl. Phys. Lett. 
84,
        2331–2333 (2004),
        
http://dx.doi.org/10.1063/1.1689401
        [12] M.V. Fischetti, Monte Carlo simulation of transport in
        technologically significant semiconductors of the diamond and
        zinc-blende structures – Part I: Homogeneous transport, IEEE
        Trans. Electron Dev. 
38, 634–649 (1991),
        
http://dx.doi.org/10.1109/16.75176
        [13] T.H. Windhorn, L.W. Cook, and G.E. Stillman, The electron
        velocity-field charateristic for n-In
0.53Ga
0.47As
        at 300 K, IEEE Electron Device Lett. 
3, 18–20 (1982),
        
http://dx.doi.org/10.1109/EDL.1982.25459
        [14] J.L. Thobel, L. Baundry, A. Cappy, P. Bourel, and R.
        Fauquembergue, Electron transport properties of strained In
xGa
1–xAs,
        Appl. Phys. Lett. 
56, 346–348 (1990),
        
http://dx.doi.org/10.1063/1.102780
        [15] P. Borowik and J.L. Thobel, Improved Monte Carlo method for
        the study of electron transport in degenerate semiconductors, J.
        Appl. Phys. 
84, 3706–3709 (1998),
        
http://dx.doi.org/10.1063/1.368547
        [16] A. Ghosal, D. Chattopadhyay, and N.N. Purkait, Hot-electron
        velocity overshoot in In
0.53Ga
0.47, Appl.
        Phys. Lett. 
44, 773–774 (1984),
        
http://dx.doi.org/10.1063/1.94913
        [17] I.M. Sobol, 
The Monte Carlo Method (Mir Publishers,
        Moscow, 1975)
        [18] C. Jacoboni and L. Reggiani, The Monte Carlo method for the
        simulation of charge transport in semiconductors with
        applications to covalent materials, Rev. Mod. Phys. 
55,
        645 (1983),
        
http://dx.doi.org/10.1103/RevModPhys.55.645
        [19] J. Mateos, T. Gonzalez, D. Pardo, V. Hoel, and A. Cappy,
        Improved Monte Carlo algorithm for the simulation of 
δ-doped
        AlInAs/GaInAs HEMTs, IEEE Trans. Electron Dev. 
47, 250
        (2000),
        
http://dx.doi.org/10.1109/16.817592
        [20] K.F. Brennan and D.H. Park, Theoretical comparison of
        electron real-space transfer in classical and quantum two
        dimensional heterostructure systems, J. Appl. Phys. 
65,
        1156 (1989),
        
http://dx.doi.org/10.1063/1.343055
        [21] O. Madelung, 
Semiconductors: Data Handbook
        (Springer, Berlin, 2003),
        
http://www.springer.com/us/book/9783540404880
        [22] S. Adachi, 
Physical Properties of III–V Semiconductor
          Compounds (Wiley, New York, 1992),
        
http://dx.doi.org/10.1002/352760281X
        [23] C. Jacoboni and P. Lugli, 
The Monte Carlo Method for
          Semiconductor Device Simulation (Springer-Verlag Wien,
        1989),
        
http://dx.doi.org/10.1007/978-3-7091-6963-6
        [24] G.M. Dunn, G.J. Rees, J.P.R. David, S.A. Plimmer, and D.C.
        Herbert, Monte Carlo simulation of impact ionization and current
        multiplication in short GaAs p
+in
+ diodes,
        Semicond. Sci. Technol. 
12, 111 (1997),
        
http://dx.doi.org/10.1088/0268-1242/12/1/019
        [25] G.M. Dunn, A. Phillips, and P.J. Topham, Current
        instability in power HEMTs, Semicond. Sci. Technol. 
16,
        562 (2001),
        
http://dx.doi.org/10.1088/0268-1242/16/7/306
        [26] B.G. Vasallo, J. Mateos, D. Pardo, and T. González,
        Influence of trapping-detrapping processes on shot noise in
        nondegenerate quasiballistic transport, Semicond. Sci. Technol.
        
17, 440 (2002),
        
http://dx.doi.org/10.1088/0268-1242/17/5/306
        [27] K. Kalna and A. Asenov, Gate tunnelling and impact
        ionisation in sub 100 nm PHEMTs, IEICE Trans. Electron. (Special
        Issue on the 2002 IEEE International Conference on Simulation of
        Semiconductor Processes and Devices (SISPAD'02)) 
86(3),
        330 (2003), 
        
http://search.ieice.org/bin/summary.php?id=e86-c_3_330
        [28] C.L. Anderson and C.R. Crowell, Threshold energies for
        electron-hole pair production by impact ionization in
        semiconductors, Phys. Rev. B 
5, 2267 (1972),
        
http://dx.doi.org/10.1103/PhysRevB.5.2267
        [29] W. Quade, E. Scoll, and M. Ruden, Impact ionization within
        the hydrodynamic approach to semiconductor transport, Solid
        State Electron. 
36, 1493 (1993),
        
http://dx.doi.org/10.1016/0038-1101(93)90059-Y
        [30] T.P. Pearsall, Impact ionization rates for electrons and
        holes in Ga
0.47In
0.53As, Appl. Phys. Lett.
        
36, 218 (1980),
        
http://dx.doi.org/10.1063/1.91431
        [31] F. Osaka, T. Mikawa, and T. Kanada, Impact ionization
        coefficients of electrons and holes in (100)-oriented Ga
1–xIn
xAs
yP
1–y,
        IEEE J. Quantum Electron. 
21, 1326 (1985),
        
http://dx.doi.org/10.1109/JQE.1985.1072835
        [32] J. Bude and K. Hess, Thresholds of impact ionization in
        semiconductors, J. Appl. Phys 
72, 3554 (1992),
        
http://dx.doi.org/10.1063/1.351434
        [33] G.E. Bulman, V.M. Robbins, G.E. Stillmann, G. Hill, and
        G.J. Rees, Thresholds of impact ionization in semiconductors,
        IEEE Trans. Electron Dev. 
32, 2454 (1985),
        
http://dx.doi.org/10.1109/T-ED.1985.22295
        [34] D.S. Ong, K.Y. Choo, Analytical band Monte Carlo simulation
        of electron impact ionization in In
0.53Ga
0.47As,
        J. Appl. Phys. 
96, 5649 (2004),
        
http://dx.doi.org/10.1063/1.1803930
        [35] J.S. Ng, C.H. Tan, J.P.R. David, G. Hill, and G.J. Rees,
        Thresholds of impact ionization in semiconductors, IEEE Trans.
        Electron Dev. 
50, 901 (2003),
        
http://dx.doi.org/10.1109/TED.2003.812492
        [36] G. Stillmann, in: 
Properties of Lattice-Matched and
          Strained Indium Gallium Arsenide, ed. P. Bhattacharya
        (INSPEC, London, U. K., 1993)
        [37] M.P. Mikhailova, A.A. Rogachev, and I.N. Yassievich, Impact
        ionization and Auger recombination in InAs, Sov. Phys. Semicond.
        
10(8), 866–871 (1976)
        [38] K. Brennan and K. Hesse, High field transport in GaAs, InP
        and InAs, Solid State Electron. 
27(4), 347–357 (1984),
        
http://dx.doi.org/10.1016/0038-1101(84)90168-0
        [39] K.F. Brennan and N.S. Mansour, Monte Carlo calculation of
        electron impact ionization in bulk InAs and HgCdTe, J. Appl.
        Phys. 
69(11), 7844–7847 (1991),
        
http://dx.doi.org/10.1063/1.347516
        [40] A. Krotkus and Z. Dobrovolskis, 
Electrical Conductivity
          of Narrow-Gap Semiconductors (Mokslas, Vilnius, 1988)
        [41] L. Reggiani, Topics in Applied Physics. Hot-Electron
        Transport in Semiconductors, Vol. 58 (Springer-Verlag Berlin
        Heidelberg GmbH, 1985),
        
http://dx.doi.org/10.1007/3-540-13321-6
        [42] Y. Hori, Y. Ando, Y. Miyamoto, and O. Sugino, Effect of
        strain on band structure and electron transport in InAs, Solid
        State Electron. 
43, 1813–1816 (1999),
        
http://dx.doi.org/10.1016/S0038-1101(99)00126-4
        [43] M.A. Hasse, N. Robbins, N. Tabatabaie, and G.E. Stillmann,
        Subthreshold electron velocity-field characteristics of GaAs and
        In
0.53Ga
0.47As, J. Appl. Phys. 
57,
        2295 (1985),
        
http://dx.doi.org/10.1063/1.335464
        [44] J.H. Marsh, Effects of compositional clustering on electron
        transport in In
0.53Ga
0.47As, Appl. Phys.
        Lett. 
41(8), 732–734 (1982),
        
http://dx.doi.org/10.1063/1.93658
        [45] W.K. Ng, C.H. Tan, J.P.R. David, P.A. Houston, M. Yee, and
        J.S. Ng, Temperature dependent low-field electron multiplication
        in In
0.53Ga
0.47As, Appl. Phys. Lett. 
83(14),
        2820–2822 (2003),
        
http://dx.doi.org/10.1063/1.1615684
        [46] M.A. Littlejohn, K.W. Kim, and H. Tian, in: 
Properties
          of Lattice-Matched and Strained Indium Gallium Arsenide,
        ed. P. Bhattacharya (INSPEC, London, U. K., 1993) pp. 107–116
        [47] V. Balynas, A. Krotkus, A. Stalnionis, A.T. Gorelionok,
        N.M. Shmidt, and J.A. Tellefsen, Time-resolved, hot-electron
        conductivity measurement using an electro-optic sampling
        technique, Appl. Phys. Lett. 
51(4), 357–360 (1990),
        
http://dx.doi.org/10.1007/bf00324321
        [48] C.H. Tan, G.J. Rees, P.A. Houston, J.S. Ng, W.K. Ng, and
        J.P.R. David, Temperature dependence of electron impact
        ionisation in In
0.53Ga
0.47As, Appl. Phys.
        Lett. 
84, 2322 (2004),
        
http://dx.doi.org/10.1063/1.1691192
        [49] M. Isler, Phonon-assisted impact ionization of electron in
        In
0.53Ga
0.47As, Phys. Rev. B 
63,
        115209 (2001),
        
http://dx.doi.org/10.1103/PhysRevB.63.115209
        [50] G. Satyanadh, R.P. Joshi, N. Abedin, and U. Singh, Monte
        Carlo calculation of electron drift characteristics and
        avalanche noise in bulk InAs, J. Appl. Phys. 
91,
        1331–1338 (2002),
        
http://dx.doi.org/10.1063/1.1429771
        [51] L. Amer, C. Sayah, B. Bouazza, A. Guen-Bouazza, N.E.
        Chabane-Sari, and C. Gontrand, Analyse du phénomène de transport
        électronique dans l'InAs et le GaAs par la méthode de Monte
        Carlo pour la conception d'un transistor HEMT, in: 
CISTEMA'2003
        (Université de Tlemcen, 2003), 
        
[ResearchGate]
        [52] T.P. Pearsall, 
GaInAsP Alloy Semiconductors (John
        Wiley & Sons, Chichester, 1982),
        
http://www.worldcat.org/title/gainasp-alloy-semiconductors/oclc/7836511
        [53] V.V. Karataev, M.G. Mil'vidsky, N.S. Rytova, and V.I.
        Fistui, Compensation in n-type InAs, Sov. Phys. Semicond. 
11(9),
        1009–1011 (1977)