[PDF]    http://dx.doi.org/10.3952/physics.v55i4.3228

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 305314 (2015)


REVIEW OF ELECTRON TRANSPORT PROPERTIES IN BULK InGaAs AND InAs AT ROOM TEMPERATURE
Slyman Karishya, Pierre Ziadéa, Giulio Sabatinib, Hugues Marinchiob, Christophe Palermob, Luca Varanib, Javier Mateosc, and Tomas Gonzalezc
aEcole Doctorale de Sciences et Technologies, Université Libanaise, Fanar, Liban
bInstitut d’Electronique et des Systèmes, CNRS UMR 5214, University of Montpellier, France
E-mail: luca.varani@umontpellier.fr
cDepartment of Applied Physics, University of Salamanca, Spain

Received 29 September 2015; accepted 29 September 2015

A Monte Carlo simulation of electron transport in In0.53Ga0.47As and InAs is performed in order to extract the main kinetic parameters: mean valley population, effective mass, drift velocity, mean energy, ohmic and differential mobility. Most of these quantities are crucial for the development of macroscopic numerical models. Moreover, for some calculated quantities, analytical interpolation equations are given in order to achieve easy implementation in numerical codes. A comparison between our Monte Carlo calculation and several experimental and theoretical calculations is also carried out in order to validate the results.
Keywords: Monte Carlo, transport, InGaAs, InAs
PACS:72.20.Fr, 72.20.Ht, 72.80.Ey

ELEKTRONŲ PERNAŠOS TŪRINIUOSE INGAAS IR InAs KAMBARIO TEMPERATŪROJE SAVYBIŲ APŽVALGA

Slyman Karishya, Pierre Ziadéa, Giulio Sabatinib, Hugues Marinchiob, Christophe Palermob, Luca Varanib, Javier Mateosc, Tomas Gonzalezc
aLibano universitetas, Fanaras, Libanas
bMonpeljė universitetas, Prancūzija
cSalamankos universitetas, Ispanija

References / Nuorodos

[1] Nanoelectronics and Information Technology, ed. R. Waser (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527409270.html
[2] T. Suemitsu, T. Ishii, H. Yokoyama, Y. Umeda, T. Enoki, Y. Ishii, and T. Tamamura, 30-nm-gate InAlAs/InGaAs HEMTs lattice-matched to InP substrates, Tech. Dig. IEDM, 223–226 (1998),
http://dx.doi.org/10.1109/IEDM.1998.746339
[3] T. Suemitsu, H. Yokoyama, T. Ishii, T. Enoki, G. Meneghesso, and E. Zanoni, 30-nm two-step recess gate InP-based InAlAs/InGaAs HEMTs, IEEE Trans. Electron Dev. 49, 1694 (2002),
http://dx.doi.org/10.1109/TED.2002.803646
[4] K. Shinohara, Y. Yamashita, A. Endoh, I. Watanabe, K. Hikosaka, T. Matsui, T. Mimura, and S. Hiyamizu, 547-GHz ft In0.7Ga0.3As-In0.52Al0.48As HEMTs with reduced source and drain resistance, IEEE Electron Device Lett. 25, 241 (2004),
http://dx.doi.org/10.1109/LED.2004.826543
[5] K. Shinohara, Y. Yamashita, A. Endoh, I. Watanabe, K. Hikosaka, T. Mimura, S. Hiyamizu, and T. Matsui, Nanogate InP-HEMT technology for ultrahigh-speed performance, in: Proceedings of 16th International Conference on Indium Phosphide and Related Materials, IEEE Catalog 04CH37589 (Kagoshima, Japan, 2004) p. 721,
http://dx.doi.org/10.1109/ICIPRM.2004.1442827
[6] B. Doyle, R. Arghavani, D. Barlage, M. Datta, S. Doczy, J. Kavalieros, A. Murthy, and R. Chau, Transistor elements for 30 nm physical gate lengths and beyond, Intel Technol. J. 6, 42 (2002),
[PDF]
[7] R. Dingle, H.R. Stormer, A.C. Gossard, and W. Wiegmann, Electron mobilities in modulation-doped semiconductor heterojunction superlattices, J. Appl. Phys. 33, 655 (1978),
http://dx.doi.org/10.1063/1.90457
[8] T. Mimura, K. Joshin, S. Hiyamizu, K. Kikusaka, and M. Abe, High electron mobility transistor logic, Jpn. J. Appl. Phys. 20, L598–600 (1981),
http://dx.doi.org/10.1143/JJAP.20.L598
[9] J.H. Marsh, Effects of compositional clustering on electron transport in In0.53Ga0.47As, Appl. Phys. Lett. 41, 732 (1982),
http://dx.doi.org/10.1063/1.93658
[10] W. Knap, J. Łusakowski, F. Teppe, N. Dyakonova, and Y. Meziani, Terahertz generation and detection by plasma waves in nanometer gate high electron mobility transistors, Acta Phys. Pol. A 107(1), 82 (2005),
http://przyrbwn.icm.edu.pl/APP/ABSTR/107/a107-1-9.html
[11] W. Knap, J. Lusakowski, T. Parenty, S. Bollaeret, A. Cappy, and M. Shur, Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors, Appl. Phys. Lett. 84, 2331–2333 (2004),
http://dx.doi.org/10.1063/1.1689401
[12] M.V. Fischetti, Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures – Part I: Homogeneous transport, IEEE Trans. Electron Dev. 38, 634–649 (1991),
http://dx.doi.org/10.1109/16.75176
[13] T.H. Windhorn, L.W. Cook, and G.E. Stillman, The electron velocity-field charateristic for n-In0.53Ga0.47As at 300 K, IEEE Electron Device Lett. 3, 18–20 (1982),
http://dx.doi.org/10.1109/EDL.1982.25459
[14] J.L. Thobel, L. Baundry, A. Cappy, P. Bourel, and R. Fauquembergue, Electron transport properties of strained InxGa1–xAs, Appl. Phys. Lett. 56, 346–348 (1990),
http://dx.doi.org/10.1063/1.102780
[15] P. Borowik and J.L. Thobel, Improved Monte Carlo method for the study of electron transport in degenerate semiconductors, J. Appl. Phys. 84, 3706–3709 (1998),
http://dx.doi.org/10.1063/1.368547
[16] A. Ghosal, D. Chattopadhyay, and N.N. Purkait, Hot-electron velocity overshoot in In0.53Ga0.47, Appl. Phys. Lett. 44, 773–774 (1984),
http://dx.doi.org/10.1063/1.94913
[17] I.M. Sobol, The Monte Carlo Method (Mir Publishers, Moscow, 1975)
[18] C. Jacoboni and L. Reggiani, The Monte Carlo method for the simulation of charge transport in semiconductors with applications to covalent materials, Rev. Mod. Phys. 55, 645 (1983),
http://dx.doi.org/10.1103/RevModPhys.55.645
[19] J. Mateos, T. Gonzalez, D. Pardo, V. Hoel, and A. Cappy, Improved Monte Carlo algorithm for the simulation of δ-doped AlInAs/GaInAs HEMTs, IEEE Trans. Electron Dev. 47, 250 (2000),
http://dx.doi.org/10.1109/16.817592
[20] K.F. Brennan and D.H. Park, Theoretical comparison of electron real-space transfer in classical and quantum two dimensional heterostructure systems, J. Appl. Phys. 65, 1156 (1989),
http://dx.doi.org/10.1063/1.343055
[21] O. Madelung, Semiconductors: Data Handbook (Springer, Berlin, 2003),
http://www.springer.com/us/book/9783540404880
[22] S. Adachi, Physical Properties of III–V Semiconductor Compounds (Wiley, New York, 1992),
http://dx.doi.org/10.1002/352760281X
[23] C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Springer-Verlag Wien, 1989),
http://dx.doi.org/10.1007/978-3-7091-6963-6
[24] G.M. Dunn, G.J. Rees, J.P.R. David, S.A. Plimmer, and D.C. Herbert, Monte Carlo simulation of impact ionization and current multiplication in short GaAs p+in+ diodes, Semicond. Sci. Technol. 12, 111 (1997),
http://dx.doi.org/10.1088/0268-1242/12/1/019
[25] G.M. Dunn, A. Phillips, and P.J. Topham, Current instability in power HEMTs, Semicond. Sci. Technol. 16, 562 (2001),
http://dx.doi.org/10.1088/0268-1242/16/7/306
[26] B.G. Vasallo, J. Mateos, D. Pardo, and T. González, Influence of trapping-detrapping processes on shot noise in nondegenerate quasiballistic transport, Semicond. Sci. Technol. 17, 440 (2002),
http://dx.doi.org/10.1088/0268-1242/17/5/306
[27] K. Kalna and A. Asenov, Gate tunnelling and impact ionisation in sub 100 nm PHEMTs, IEICE Trans. Electron. (Special Issue on the 2002 IEEE International Conference on Simulation of Semiconductor Processes and Devices (SISPAD'02)) 86(3), 330 (2003),
http://search.ieice.org/bin/summary.php?id=e86-c_3_330
[28] C.L. Anderson and C.R. Crowell, Threshold energies for electron-hole pair production by impact ionization in semiconductors, Phys. Rev. B 5, 2267 (1972),
http://dx.doi.org/10.1103/PhysRevB.5.2267
[29] W. Quade, E. Scoll, and M. Ruden, Impact ionization within the hydrodynamic approach to semiconductor transport, Solid State Electron. 36, 1493 (1993),
http://dx.doi.org/10.1016/0038-1101(93)90059-Y
[30] T.P. Pearsall, Impact ionization rates for electrons and holes in Ga0.47In0.53As, Appl. Phys. Lett. 36, 218 (1980),
http://dx.doi.org/10.1063/1.91431
[31] F. Osaka, T. Mikawa, and T. Kanada, Impact ionization coefficients of electrons and holes in (100)-oriented Ga1–xInxAsyP1–y, IEEE J. Quantum Electron. 21, 1326 (1985),
http://dx.doi.org/10.1109/JQE.1985.1072835
[32] J. Bude and K. Hess, Thresholds of impact ionization in semiconductors, J. Appl. Phys 72, 3554 (1992),
http://dx.doi.org/10.1063/1.351434
[33] G.E. Bulman, V.M. Robbins, G.E. Stillmann, G. Hill, and G.J. Rees, Thresholds of impact ionization in semiconductors, IEEE Trans. Electron Dev. 32, 2454 (1985),
http://dx.doi.org/10.1109/T-ED.1985.22295
[34] D.S. Ong, K.Y. Choo, Analytical band Monte Carlo simulation of electron impact ionization in In0.53Ga0.47As, J. Appl. Phys. 96, 5649 (2004),
http://dx.doi.org/10.1063/1.1803930
[35] J.S. Ng, C.H. Tan, J.P.R. David, G. Hill, and G.J. Rees, Thresholds of impact ionization in semiconductors, IEEE Trans. Electron Dev. 50, 901 (2003),
http://dx.doi.org/10.1109/TED.2003.812492
[36] G. Stillmann, in: Properties of Lattice-Matched and Strained Indium Gallium Arsenide, ed. P. Bhattacharya (INSPEC, London, U. K., 1993)
[37] M.P. Mikhailova, A.A. Rogachev, and I.N. Yassievich, Impact ionization and Auger recombination in InAs, Sov. Phys. Semicond. 10(8), 866–871 (1976)
[38] K. Brennan and K. Hesse, High field transport in GaAs, InP and InAs, Solid State Electron. 27(4), 347–357 (1984),
http://dx.doi.org/10.1016/0038-1101(84)90168-0
[39] K.F. Brennan and N.S. Mansour, Monte Carlo calculation of electron impact ionization in bulk InAs and HgCdTe, J. Appl. Phys. 69(11), 7844–7847 (1991),
http://dx.doi.org/10.1063/1.347516
[40] A. Krotkus and Z. Dobrovolskis, Electrical Conductivity of Narrow-Gap Semiconductors (Mokslas, Vilnius, 1988)
[41] L. Reggiani, Topics in Applied Physics. Hot-Electron Transport in Semiconductors, Vol. 58 (Springer-Verlag Berlin Heidelberg GmbH, 1985),
http://dx.doi.org/10.1007/3-540-13321-6
[42] Y. Hori, Y. Ando, Y. Miyamoto, and O. Sugino, Effect of strain on band structure and electron transport in InAs, Solid State Electron. 43, 1813–1816 (1999),
http://dx.doi.org/10.1016/S0038-1101(99)00126-4
[43] M.A. Hasse, N. Robbins, N. Tabatabaie, and G.E. Stillmann, Subthreshold electron velocity-field characteristics of GaAs and In0.53Ga0.47As, J. Appl. Phys. 57, 2295 (1985),
http://dx.doi.org/10.1063/1.335464
[44] J.H. Marsh, Effects of compositional clustering on electron transport in In0.53Ga0.47As, Appl. Phys. Lett. 41(8), 732–734 (1982),
http://dx.doi.org/10.1063/1.93658
[45] W.K. Ng, C.H. Tan, J.P.R. David, P.A. Houston, M. Yee, and J.S. Ng, Temperature dependent low-field electron multiplication in In0.53Ga0.47As, Appl. Phys. Lett. 83(14), 2820–2822 (2003),
http://dx.doi.org/10.1063/1.1615684
[46] M.A. Littlejohn, K.W. Kim, and H. Tian, in: Properties of Lattice-Matched and Strained Indium Gallium Arsenide, ed. P. Bhattacharya (INSPEC, London, U. K., 1993) pp. 107–116
[47] V. Balynas, A. Krotkus, A. Stalnionis, A.T. Gorelionok, N.M. Shmidt, and J.A. Tellefsen, Time-resolved, hot-electron conductivity measurement using an electro-optic sampling technique, Appl. Phys. Lett. 51(4), 357–360 (1990),
http://dx.doi.org/10.1007/bf00324321
[48] C.H. Tan, G.J. Rees, P.A. Houston, J.S. Ng, W.K. Ng, and J.P.R. David, Temperature dependence of electron impact ionisation in In0.53Ga0.47As, Appl. Phys. Lett. 84, 2322 (2004),
http://dx.doi.org/10.1063/1.1691192
[49] M. Isler, Phonon-assisted impact ionization of electron in In0.53Ga0.47As, Phys. Rev. B 63, 115209 (2001),
http://dx.doi.org/10.1103/PhysRevB.63.115209
[50] G. Satyanadh, R.P. Joshi, N. Abedin, and U. Singh, Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs, J. Appl. Phys. 91, 1331–1338 (2002),
http://dx.doi.org/10.1063/1.1429771
[51] L. Amer, C. Sayah, B. Bouazza, A. Guen-Bouazza, N.E. Chabane-Sari, and C. Gontrand, Analyse du phénomène de transport électronique dans l'InAs et le GaAs par la méthode de Monte Carlo pour la conception d'un transistor HEMT, in: CISTEMA'2003 (Université de Tlemcen, 2003),
[ResearchGate]
[52] T.P. Pearsall, GaInAsP Alloy Semiconductors (John Wiley & Sons, Chichester, 1982),
http://www.worldcat.org/title/gainasp-alloy-semiconductors/oclc/7836511
[53] V.V. Karataev, M.G. Mil'vidsky, N.S. Rytova, and V.I. Fistui, Compensation in n-type InAs, Sov. Phys. Semicond. 11(9), 1009–1011 (1977)