Received 5 October 2015; revised 10 November 2015; accepted 15
      December 2015
      
      
Išnagrinėtas karštųjų fononų
        vaidmuo sukuriant papildomą elektronų greičių koreliaciją Al0,23Ga0,77N/GaN
        darinyje su dvimatėmis elektronų dujomis, veikiamomis stipriu
        elektriniu lauku, sudarytu dvimatės kvantinės protakos
        plokštumoje. Karštaisiais fononais įprasta vadinti išilginius
        optinius fononus, kuriuos išspinduliuoja karštieji elektronai
        taip atsikratydami savo perteklinės energijos. Kaupdamiesi
        dvimatėje protakoje, karštieji fononai trukdo elektronams judėti
        ir dalyvauja sukuriant papildomą koreliaciją. Šrėdingerio ir
        Puasono lygčių sistemos skaitmeninis sprendimas panaudotas
        sudarant juostų sandaros ir elektronų sklaidos modelį, kuris
        sprendžiamas Monte Karlo metodu. Papildomos koreliacijos
        tenzoriaus sandas elektrinio lauko kryptimi įvertinamas karštųjų
        elektronų temperatūros artinyje. Parodyta, kad ilgesnės karštųjų
        fononų pusėjimo trukmės lemia reikšmingesnę papildomą
        koreliaciją. Skaitmeninis įvertinimas neblogai dera su
        eksperimentiniais panašaus darinio tyrimo rezultatais.
      
      References
/
          Nuorodos
        
        [1] J. Požela, 
Physics
          of High-Speed Transistors (Plenum Press, New York, 1993),
        
http://dx.doi.org/10.1007/978-1-4899-1242-8
        [2] H.L. Hartnagel, R. Katilius, and A. Matulionis, 
Microwave
          Noise in Semiconductor Devices (Wiley, New York, 2001),
        
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471384321.html
        [3] C. Jungemann, A.T. Pham, B. Meinerzhagen, C. Ringhofer, and
        M. Bollhofer, Stable discretization of the Boltzmann equation
        based on spherical harmonics, box integration, and a maximum
        entropy dissipation principle, J. Appl. Phys. 
100(2),
        024502 (2006),
        
http://dx.doi.org/10.1063/1.2212207
        [4] S. Selberherr, 
Analysis and Simulation of Semiconductor
          Devices (Springer-Verlag, Wien, 1984),
        
http://dx.doi.org/10.1007/978-3-7091-8752-4
        [5] A. Matulionis, Noise, hot carrier effects, in: 
Wiley
          Encyclopedia of Electrical and Electronics Engineering,
        ed. J.G. Webster, Vol. 14 (Wiley & Sons, 1999) pp. 410–428,
        
http://dx.doi.org/10.1002/047134608X.W3155.pub2
        [6] P.J. Price, Fluctuations of hot electrons, in: 
Fluctuation
          Phenomena in Solids, ed. R.E. Burgess (Academic Press, New
        York, 1965) pp. 353–379, 
        
http://www.amazon.co.uk/Fluctuation-Phenomena-Solids-R-E-Burgess/dp/0121436500/
        [7] S.V. Gantsevich, V.L. Gurevich, and R. Katilius, Theory of
        fluctuations in nonequilibrium electron gas, Riv. Nuovo Cimento
        
2(5), 1–87 (1979),
        
http://dx.doi.org/10.1007/BF02724353
        [8] M. Ramonas, R. Katilius, A. Matulionis, and S.V. Gantsevich,
        Kinetic correlation in non-equilibrium fermion-boson gas, Fluct.
        Noise Lett. 
12(4), 1350023 (2013),
        
http://dx.doi.org/10.1142/S0219477513500235
        [9] J. Požela and A. Reklaitis, Diffusion coefficient of hot
        electrons in GaAs, Solid State Commun. 
27(11), 1073–1077
        (1978),
        
http://dx.doi.org/10.1016/0038-1098(78)91113-4
        [10] J.G. Ruch and G.S. Kino, Transport properties of GaAs,
        Phys. Rev. 
174(3), 921–931 (1968),
        
http://dx.doi.org/10.1103/PhysRev.174.921
        [11] L. Reggiani, C. Canali, F. Nava, and A. Alberigi-Quaranta,
        Diffusion coefficient of holes in Ge, J. Appl. Phys. 
49(8),
        4446–4452 (1978),
        
http://dx.doi.org/10.1063/1.325501
        [12] V. Bareikis, I. Vaitkevičiūtė, and J. Požela, Fluctuations
        of hot current carriers in germanium, Lietuvos fizikos rinkinys
        – Lit. fiz. sb. 
6(3), 437–439 (1966) [in Russian]
        [13] V. Bareikis, J. Požela, and I. Matulionienė, Noise and
        diffusion of hot carriers in p-Ge, in: 
Proceedings of the
          9th International Conference on the Physics of Semiconductors,
        ed. S.M. Ryvkin (Leningrad, Nauka, 1968) pp. 760–765
        [14] V. Aninkevičius, V. Bareikis, J. Liberis, A. Matulionis,
        and P. Kop'ev, Real-space-transfer noise and diffusion in
        GaAs/AlGaAs heterostructure, in: 
Proceedings of the 11th
          International Conference on Noise in Physical Systems and 1/f
          Fluctuations, eds. T. Musha, S. Sato, and M. Yamamoto
        (Ohmsha, Tokyo, 1991) pp. 183–186
        [15] V. Aninkevičius, V. Bareikis, R. Katilius, P. Kop'ev, M.R.
        Leys, J. Liberis, and A. Matulionis, Hot-electron noise and
        diffusion in AlGaAs/GaAs, Semicond. Sci. Technol. 
9(5S),
        576–579 (1994),
        
http://dx.doi.org/10.1088/0268-1242/9/5S/048
        [16] V. Bareikis, R. Katilius, J. Požela, S.V. Gantsevich, and
        V.L. Gurevich, Fluctuation spectroscopy of hot electrons in
        semiconductors, in: 
Spectroscopy of Nonequilibrium Electrons
          and Phonons, Vol. 35 (Elsevier, Amsterdam, 1992) pp.
        327–396,
        
http://dx.doi.org/10.1016/B978-0-444-89637-7.50013-2
        [17] J.A. Kash and J.C. Tsang, Nonequilibrium phonons in
        semiconductors, in: 
Spectroscopy of Nonequilibrium Electrons
          and Phonons, Vol. 35 (Elsevier, Amsterdam, 1992) pp.
        113–167,
        
http://dx.doi.org/10.1016/B978-0-444-89637-7.50008-9
        [18] J. Liberis, I. Matulionienė, A. Matulionis, M. Ramonas, and
        L.F. Eastman, Hot phonons in high-power microwave HEMT and FET
        channels, in: 
Advanced Semiconductor Materials and Devices
          Research: IIINitrides and SiC (Transworld Research
        Network, Kerala, India, 2009) pp. 203–242
        [19] A. Matulionis, J. Liberis, I. Matulionienė, M. Ramonas,
        L.F. Eastman, J.R. Shealy, V. Tilak, and A. Vertiatchikh,
        Hot-electron temperature and lifetime in a biased Al
xGa
1–xN/GaN
        channel estimated from noise analysis, Phys. Rev. B 
68(3),
        035338 (2003),
        
http://dx.doi.org/10.1103/PhysRevB.68.035338
        [20] R. Katilius and A. Matulionis, Additional correlation in a
        non-equilibrium two-dimensional electron gas, Lith. J. Phys. 
42(3),
        199–205 (2002)
        [21] M. Ramonas, A. Matulionis, J. Liberis, L.F. Eastman, X.
        Chen, and Y.-J. Sun, Hot-phonon effect on power dissipation in a
        biased AlGaN/AlN/GaN channel, Phys. Rev. B 
71(7),
        075324-1–8 (2005),
        
http://dx.doi.org/10.1103/PhysRevB.71.075324
        [22] J. Liberis, M. Ramonas, E. Šermukšnis, P. Sakalas, N.
        Szabo, M. Schuster, A. Wachowiak, and A. Matulionis, Hot-phonon
        lifetime in Al
0.23Ga
0.77N/GaN channels,
        Semicond. Sci. Technol. 
29(4), 045018 (2014),
        
http://dx.doi.org/10.1088/0268-1242/29/4/045018
        [23] A. Matulionis, R. Katilius, J. Liberis, L. Ardaravičius,
        L.F. Eastman, J.R. Shealy, and J. Smart, Hot-electron
        temperature relaxation time in a 2-DEG: AlGaN/GaN at 80 K, J.
        Appl. Phys. 
92(8), 4490–4497 (2002),
        
http://dx.doi.org/10.1063/1.1510166
        [24] T. Zubkutė and A. Matulionis, Hot-electron energy
        dissipation and interelectron collisions in GaN-WZ, Semicond.
        Sci. Technol. 
17(11), 1144–1148 (2002),
        
http://dx.doi.org/10.1088/0268-1242/17/11/302
        [25] A. Matulionis, R. Raguotis, and R. Katilius, Interparticle
        collisions and hot electron velocity fluctuations in GaAs at 80
        K, Phys. Rev. B 
56(4), 2052–2057 (1997),
        
http://dx.doi.org/10.1103/PhysRevB.56.2052
        [26] A. Matulionis, J. Liberis, L. Ardaravičius, L.F. Eastman,
        J.R. Shealy, and A. Vertiatchikh, Hot-phonon lifetime in
        AlGaN/GaN at high lattice temperatures, Semicond. Sci. Technol.
        
19(5S), S421–423 (2004),
        
http://dx.doi.org/10.1088/0268-1242/19/4/138