Received 28 September 2015; revised 23 November 2015; accepted 15
      December 2015
      
      
        The ionizing radiation induced disordered
          defect clusters and their relaxation in silicon were simulated
          by the density functional method. It was found that a
          non-relaxed disordered cluster gives rise to a great number of
          localized states having their energy levels within the
          semiconductor forbidden band gap. After the relaxation,
          however, the density of these states significantly decreases
          leaving only several relatively shallow donor and acceptor
          state levels that may contribute to trapping of free carriers
          and shrinkage of an effective band gap.
          
         Keywords: radiation
        clusters, disordered semiconductor, local levels
        
PACS: 61.72.J-,
        29.40.Wk, 61.80.Az, 71.15.Mb
      
 
      
      Jonizuojančioji spinduliuotė
        sukuria netvarkias defektų sankaupas. Nedidelės sankaupos ir
        sukurtos sankaupos modeliuotos tankio funkcionalo metodu silicio
        kristale. Gauta, kad nerelaksavusios sankaupos sukuria daug
        lokalizuotų būsenų draustinėje juostoje. Pasibaigus relaksacijai
        didžioji dalis šių būsenų sumažėja ir lieka santykinai seklių
        donorinės ir akceptorinės prigimties lygmenų, kurie gali daryti
        įtaką krūvininkų prilipimui bei mažinti efektinį draustinės
        juostos plotį.
      References
/
          Nuorodos
        
        [1] G. Lutz, 
Semiconductor
          Radiation Detectors. Device Physics (Springer, 2007), 
        
http://dx.doi.org/10.1007/978-3-540-71679-2
        [2] B.R. Gossick, Disordered regions in semiconductors bombarded
        by fast neutrons, J. Appl. Phys. 
30, 1214–1217 (1959), 
        
http://dx.doi.org/10.1063/1.1735295
        [3] J.F. Ziegler, Beam interactions with materials and atoms,
        Nucl. Instrum. Methods B 
219–220, 1027–1036 (2004), 
        
http://dx.doi.org/10.1016/j.nimb.2004.01.208
        [4] M. Huhtinen, Simulation of non-ionising energy loss and
        defect formation in silicon, Nucl. Instrum. Methods A 
491,
        194–215 (2002), 
        
http://dx.doi.org/10.1016/S0168-9002(02)01227-5
        [5] M. Aboy, I. Santos, L. Pelaz, L.A. Marqués, and P. López,
        Modeling of defects, dopant diffusion and clustering in silicon,
        J. Comput. Electron. 
13, 40–58 (2014), 
        
http://dx.doi.org/10.1007/s10825-013-0512-5
        [6] J.L. Hastings, S.K. Estreicher, and P.A. Fedders, Vacancy
        aggregates in silicon, Phys. Rev. B 
56, 10215–10220
        (1997), 
        
http://dx.doi.org/10.1103/PhysRevB.56.10215
        [7] M.P. Chichkine, M.M. De Souza, and E.M.S. Narayanan, Growth
        of precursors in silicon using pseudopotential calculations,
        Phys. Rev. Lett. 
88, 085501 (2002), 
        
http://dx.doi.org/10.1103/PhysRevLett.88.085501
        [8] S. Goedecker, T. Deutsch, and L. Billard, A four-fold
        coordinated point defect in silicon, Phys. Rev. Lett. 
88,
        235501 (2002), 
        
http://dx.doi.org/10.1103/PhysRevLett.88.235501
        [9] M. Moll, 
Radiation Damage in Silicon Particle Detectors
          – Microscopic Defects and Macroscopic Properties, Ph. D.
        Thesis, DESY-THESIS-1999-040 (Universität Hamburg, December
        1999), 
        
http://inspirehep.net/record/513308/
        [10] M. Moll, Development of radiation hard sensors for very
        high luminosity colliders – CERN-RD50 project, Nucl. Instrum.
        Methods A 
511, 97–105 (2003), 
        
http://dx.doi.org/10.1016/S0168-9002(03)01772-8
        [11] E. Holmström, K. Nordlund, and M. Hakala, Amorphous defect
        clusters of pure Si and type inversion in Si detectors, Phys.
        Rev. B 
82, 104111 (2010), 
        
http://dx.doi.org/10.1103/PhysRevB.82.104111
        [12] F. Neese, The ORCA program system, WIREs Comput. Mol.
        Sci. 
2, 73–78 (2012), 
        
http://dx.doi.org/10.1002/wcms.81
        [13] A.D. Becke, A multicenter numerical integration scheme for
        polyatomic molecules, J. Chem. Phys. 
88, 2547–2553
        (1988), 
        
http://dx.doi.org/10.1063/1.454033
        [14] A. Kokalj, Computer graphics and graphical user interfaces
        as tools in simulations of matter at the atomic scale, Comp.
        Mater. Sci. 
28, 155–168 (2003), 
        
http://dx.doi.org/10.1016/S0927-0256(03)00104-6
        [15] J. Werner and M. Peisl, Exponential band tails in
        polycrystalline semiconductor films, Phys. Rev. B 
31,
        6881–6885 (1985), 
        
http://dx.doi.org/10.1103/PhysRevB.31.6881
        [16] F. Finger, J. Muller, C. Malten, R. Carius, and H. Wagner,
        Electronic properties of microcrystalline silicon investigated
        by electron spin resonance and transport measurements, J.
        Non–Cryst. Solids 
266–269, 511–518 (2000), 
        
http://dx.doi.org/10.1016/S0022-3093(99)00802-9
        [17] H. Weman and B. Monemar, Strain induced intrinsic quantum
        wells as the origin of broad band photoluminescence in silicon
        containing extended defects, Mater. Res. Soc. Symp. Proc. 
163,
        257–260 (1990), 
        
http://dx.doi.org/10.1557/PROC-163-257