Received 13 November 2015; revised 6 January 2016; accepted 25
      March 2016
      
      
DERINAMO DAŽNIO FEMTOSEKUNDINĖ
            PRIVERSTINĖS RAMANO SKLAIDOS SISTEMA, PAGRĮSTA SPEKTRIŠKAI
            SUSIAURINTOS ANTROSIOS HARMONIKOS GENERAVIMU
        
      References
/
          Nuorodos
        
        [1] P. Stoutland, R.
        Dyer, and W. Woodruff, Ultrafast infrared spectroscopy, Science
        
257(5078), 1913–1917 (1992),
        
http://dx.doi.org/10.1126/science.1329200
        [2] M.D. Fayer, 
Ultrafast Infrared and Raman Spectroscopy
        (CRC Press, New York, USA, 2001),
        
http://dx.doi.org/10.1201/9780203904763
        [3] J. Knorr, P. Rudolf, and P. Nuernberger, A comparative study
        on chirped-pulse upconversion and direct multichannel MCT
        detection, Opt. Express 
21(25), 30693–30706 (2013),
        
http://dx.doi.org/10.1364/OE.21.030693
        [4] C.R. Baiz and K.J. Kubarych, Ultrabroadband detection of a
        mid-IR continuum by chirped-pulse upconversion, Opt. Lett. 
36(2),
        187–189 (2011),
        
http://dx.doi.org/10.1364/OL.36.000187
        [5] P. Kukura, D.W. McCamant, and R.A. Mathies, Femtosecond
        stimulated Raman spectroscopy, Annu. Rev. Phys. Chem. 
58(1),
        461–488 (2007),
        
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104456
        [6] D.W. McCamant, P. Kukura, and R.A. Mathies, Femtosecond
        broadband stimulated Raman: a new approach for high-performance
        vibrational spectroscopy, Appl. Spectrosc. 
57(11),
        1317–1323 (2003),
        
http://dx.doi.org/10.1366/000370203322554455
        [7] D.W. McCamant, P. Kukura, S. Yoon, and R.A. Mathies,
        Femtosecond broadband stimulated Raman spectroscopy: Apparatus
        and methods, Rev. Sci. Instrum. 
75(11), 4971–4980
        (2004),
        
http://dx.doi.org/10.1063/1.1807566
        [8] D.W. McCamant, P. Kukura, and R.A. Mathies, Femtosecond
        time-resolved stimulated Raman spectroscopy: Application to the
        ultrafast internal conversion in β-carotene, J. Phys. Chem. A 
107(40),
        8208–8214 (2003),
        
http://dx.doi.org/10.1021/jp030147n
        [9] H. Kuramochi, S. Takeuchi, and T. Tahara, Ultrafast
        structural evolution of photoactive yellow protein chromophore
        revealed by ultraviolet resonance femtosecond stimulated Raman
        spectroscopy, J. Phys. Chem. Lett. 
3(15), 2025–2029
        (2012),
        
http://dx.doi.org/10.1021/jz300542f
        [10] C. Fang, R.R. Frontiera, R. Tran, and R.A. Mathies, Mapping
        GFP structure evolution during proton transfer with femtosecond
        Raman spectroscopy, Nature 
462(7270), 200–204 (2009),
        
http://dx.doi.org/10.1038/nature08527
        [11] S. Shim and R.A. Mathies, Development of a tunable
        femtosecond stimulated Raman apparatus and its application to
        β-carotene, J. Phys. Chem. B 
112(15), 4826–4832 (2008),
        
http://dx.doi.org/10.1021/jp710518y
        [12] P. Kukura, D.W. McCamant, and R.A. Mathies, Femtosecond
        time-resolved stimulated Raman spectroscopy of the S
2
        (1B
u+) excited state of β-carotene, J.
        Phys. Chem. A 
108(28), 5921–5925 (2004),
        
http://dx.doi.org/10.1021/jp0482971
        [13] D.W. McCamant, P. Kukura, and R.A. Mathies, Femtosecond
        stimulated Raman study of excited-state evolution in
        bacteriorhodopsin, J. Phys. Chem. B 
109(20), 10449–10457
        (2005),
        
http://dx.doi.org/10.1021/jp050095x
        [14] S. Frobel, L. Buschhaus, T. Villnow, O. Weingart, and P.
        Gilch, The photoformation of a phthalide: a ketene intermediate
        traced by FSRS, Phys. Chem. Chem. Phys. 
17(1), 376–386
        (2015),
        
http://dx.doi.org/10.1039/C4CP03351E
        [15] D.P. Hoffman and R.A. Mathies, Photoexcited structural
        dynamics of an azobenzene analog
        4-nitro-4′-dimethylamino-azobenzene from femtosecond stimulated
        Raman, Phys. Chem. Chem. Phys. 
14(18), 6298–6306 (2012),
        
http://dx.doi.org/10.1039/c2cp23468h
        [16] A.L. Dobryakov, I. Ioffe, A.A. Granovsky, N.P. Ernsting,
        and S.A. Kovalenko, Femtosecond Raman spectra of cis-stilbene
        and trans-stilbene with isotopomers in solution, J. Chem. Phys.
        
137(24), 244505 (2012),
        
http://dx.doi.org/10.1063/1.4769971
        [17] A.L. Smeigh, M. Creelman, R.A. Mathies, and J.K. McCusker,
        Femtosecond time-resolved optical and Raman spectroscopy of
        photoinduced spin crossover: temporal resolution of low-to-high
        spin optical switching, J. Am. Chem. Soc. 
130(43),
        14105–14107 (2008),
        
http://dx.doi.org/10.1021/ja805949s
        [18] S. Yoon, P. Kukura, C.M. Stuart, and R.A. Mathies, Direct
        observation of the ultrafast intersystem crossing in
        tris(2,2-bipyridine)ruthenium(II) using femtosecond stimulated
        Raman spectroscopy, Mol. Phys. 
104(8), 1275–1282 (2006),
        
http://dx.doi.org/10.1080/00268970500525846
        [19] T. Fujisawa, M. Creelman, and R.A. Mathies, Structural
        dynamics of a noncovalent charge transfer complex from
        femtosecond stimulated Raman spectroscopy, J. Phys. Chem. B 
116(35),
        10453–10460 (2012),
        
http://dx.doi.org/10.1021/jp3001306
        [20] K.E. Brown, B.S. Veldkamp, D.T. Co, and M.R. Wasielewski,
        Vibrational dynamics of a perylene–perylenediimide
        donor–acceptor dyad probed with femtosecond stimulated Raman
        spectroscopy, J. Phys. Chem. Lett. 
3(17), 2362–2366
        (2012),
        
http://dx.doi.org/10.1021/jz301107c
        [21] R.M. Young, S.M. Dyar, J.C. Barnes, M. Juríček, J.F.
        Stoddart, D.T. Co, and M.R. Wasielewski, Ultrafast
        conformational dynamics of electron transfer in ExBox
4+⊂perylene,
        J. Phys. Chem. A 
117(47), 12438–12448 (2013),
        
http://dx.doi.org/10.1021/jp409883a
        [22] E.M. Grumstrup, Z. Chen, R.P. Vary, A.M. Moran, K.S.
        Schanze, and J.M. Papanikolas, Frequency modulated femtosecond
        stimulated Raman spectroscopy of ultrafast energy transfer in a
        donor–acceptor copolymer, J. Phys. Chem. B 
117(27),
        8245–8255 (2013),
        
http://dx.doi.org/10.1021/jp404498u
        [23] R.R. Frontiera and R.A. Mathies, Polarization dependence of
        vibrational coupling signals in femtosecond stimulated Raman
        spectroscopy, J. Chem. Phys. 
127(12), 124501 (2007),
        
http://dx.doi.org/10.1063/1.2780843
        [24] S. Shim and R.A. Mathies, Femtosecond Raman-induced Kerr
        effect spectroscopy, J. Raman Spectrosc. 
39(11),
        1526–1530 (2008),
        
http://dx.doi.org/10.1002/jrs.2109
        [25] R.R. Frontiera, A.-I. Henry, N.L. Gruenke, and R.P. Van
        Duyne, Surface-enhanced femtosecond stimulated Raman
        spectroscopy, J. Phys. Chem. Lett. 
2(10), 1199–1203
        (2011),
        
http://dx.doi.org/10.1021/jz200498z
        [26] D.P. Hoffman, S.R. Ellis, and R.A. Mathies,
        Characterization of a conical intersection in a charge-transfer
        dimer with two-dimensional time-resolved stimulated Raman
        spectroscopy, J. Phys. Chem. A 
118(27), 4955–4965
        (2014),
        
http://dx.doi.org/10.1021/jp5041986
        [27] D.T. Valley, D.P. Hoffman, and R.A. Mathies, Reactive and
        unreactive pathways in a photochemical ring opening reaction
        from 2D femtosecond stimulated Raman, Phys. Chem. Chem. Phys. 
17(14),
        9231–9240 (2015),
        
http://dx.doi.org/10.1039/C4CP05323K
        [28] B. Dunlap, P. Richter, and D.W. McCamant, Stimulated Raman
        spectroscopy using chirped pulses, J. Raman Spectrosc. 
45(10),
        918–929 (2014),
        
http://dx.doi.org/10.1002/jrs.4578
        [29] K.E. Dorfman, F. Schlawin, and S. Mukamel, Stimulated Raman
        spectroscopy with entangled light: enhanced resolution and
        pathway selection, J. Phys. Chem. Lett. 
5(16), 2843–2849
        (2014),
        
http://dx.doi.org/10.1021/jz501124a
        [30] R.R. Frontiera, C. Fang, J. Dasgupta, and R.A. Mathies,
        Probing structural evolution along multidimensional reaction
        coordinates with femtosecond stimulated Raman spectroscopy,
        Phys. Chem. Chem. Phys. 
14(2), 405–414 (2012),
        
http://dx.doi.org/10.1039/C1CP22767J
        [31] B. Zhao, K. Niu, X. Li, and S.-Y. Lee, Simple aspects of
        femtosecond stimulated Raman spectroscopy, Sci. China Chem. 
54(12),
        1989–2008 (2011),
        
http://dx.doi.org/10.1007/s11426-011-4430-8
        [32] W. Rock, Y.-L. Li, P. Pagano, and C.M. Cheatum, 2D IR
        spectroscopy using four-wave mixing, pulse shaping, and IR
        upconversion: a quantitative comparison, J. Phys. Chem. A 
117(29),
        6073–6083 (2013),
        
http://dx.doi.org/10.1021/jp312817t
        [33] W.R. Silva, E.L. Keller, and R.R. Frontiera, Determination
        of resonance Raman cross-sections for use in biological SERS
        sensing with femtosecond stimulated Raman spectroscopy, Anal.
        Chem. 
86(15), 7782–7787 (2014),
        
http://dx.doi.org/10.1021/ac501701h
        [34] D. Verreault, V. Kurz, C. Howell, and P. Koelsch, Sample
        cells for probing solid/liquid interfaces with broadband
        sum-frequency-generation spectroscopy, Rev. Sci. Instrum. 
81(6),
        063111 (2010),
        
http://dx.doi.org/10.1063/1.3443096
        [35] M.J. Nee, R. McCanne, K.J. Kubarych, and M. Joffre,
        Two-dimensional infrared spectroscopy detected by chirped pulse
        upconversion, Opt. Lett. 
32(6), 713–715 (2007),
        
http://dx.doi.org/10.1364/OL.32.000713
        [36] J. Zhu, T. Mathes, A.D. Stahl, J.T.M. Kennis, and M.L.
        Groot, Ultrafast mid-infrared spectroscopy by chirped pulse
        upconversion in 1800–1000 cm
–1 region, Opt. Express 
20(10),
        10562–10571 (2012),
        
http://dx.doi.org/10.1364/OE.20.010562
        [37] W. Yu, P.J. Donohoo-Vallett, J. Zhou, and A.E. Bragg,
        Ultrafast photo-induced nuclear relaxation of a conformationally
        disordered conjugated polymer probed with transient absorption
        and femtosecond stimulated Raman spectroscopies, J. Chem. Phys.
        
141(4), 044201 (2014),
        
http://dx.doi.org/10.1063/1.4890326
        [38] A. Weigel and N.P. Ernsting, Excited stilbene:
        intramolecular vibrational redistribution and solvation studied
        by femtosecond stimulated Raman spectroscopy, J. Phys. Chem. B 
114(23),
        7879–7893 (2010),
        
http://dx.doi.org/10.1021/jp100181z
        [39] S.A. Kovalenko, A.L. Dobryakov, and N.P. Ernsting, An
        efficient setup for femtosecond stimulated Raman spectroscopy,
        Rev. Sci. Instrum. 
82(6), 063102 (2011),
        
http://dx.doi.org/10.1063/1.3596453
        [40] L. Zhu, W. Liu, and C. Fang, A versatile femtosecond
        stimulated Raman spectroscopy setup with tunable pulses in the
        visible to near infrared, Appl. Phys. Lett. 
105(4),
        041106 (2014),
        
http://dx.doi.org/10.1063/1.4891766
        [41] Light Conversion TOPAS-800, accessed 14/10/2015, 
        
http://www.lightcon.com/upload/iblock/29d/29d33cd94596711304f676b78bc85064.pdf
        [42] M.A. Marangoni, D. Brida, M. Quintavalle, G. Cirmi, F.M.
        Pigozzo, C. Manzoni, F. Baronio, A.D. Capobianco, and G.
        Cerullo, Narrow-bandwidth picosecond pulses by spectral
        compression of femtosecond pulses in second-order nonlinear
        crystals, Opt. Express 
15(14), 8884–8891 (2007),
        
http://dx.doi.org/10.1364/OE.15.008884
        [43] E. Pontecorvo, C. Ferrante, C.G. Elles, and T. Scopigno,
        Spectrally tailored narrowband pulses for femtosecond stimulated
        Raman spectroscopy in the range 330–750 nm, Opt. Express 
21(6),
        6866–6872 (2013),
        
http://dx.doi.org/10.1364/OE.21.006866
        [44] V.G. Dmitriev, G.G. Gurzadyan, and D.N. Nikogosyan, 
Handbook
          of Nonlinear Optical Crystals (Springer, Berlin, Germany,
        1999),
        
http://dx.doi.org/10.1007/978-3-540-46793-9
        [45] E. Pontecorvo, S.M. Kapetanaki, M. Badioli, D. Brida, M.
        Marangoni, G. Cerullo, and T. Scopigno, Femtosecond stimulated
        Raman spectrometer in the 320–520 nm range, Opt. Express 
19(2),
        1107–1112 (2011),
        
http://dx.doi.org/10.1364/OE.19.001107
        [46] D.P. Hoffman, O.P. Lee, J.E. Millstone, M.S. Chen, T.A. Su,
        M. Creelman, J.M.J. Fréchet, and R.A. Mathies, Electron transfer
        dynamics of triphenylamine dyes bound to TiO
2
        nanoparticles from femtosecond stimulated Raman spectroscopy, J.
        Phys. Chem. C 
117(14), 6990–6997 (2013),
        
http://dx.doi.org/10.1021/jp400369b
        [47] F. Han, W. Liu, and C. Fang, Excited-state proton transfer
        of photoexcited pyranine in water observed by femtosecond
        stimulated Raman spectroscopy, Chem. Phys. 
422, 204–219
        (2013),
        
http://dx.doi.org/10.1016/j.chemphys.2013.03.009
        [48] M. Kloz, R. van Grondelle, and J.T.M. Kennis,
        Wavelength-modulated femtosecond stimulated Raman spectroscopy –
        approach towards automatic data processing, Phys. Chem. Chem.
        Phys. 
13(40), 18123–18133 (2011),
        
http://dx.doi.org/10.1039/c1cp21650c
        [49] A. Weigel, A. Dobryakov, B. Klaumünzer, M. Sajadi, P.
        Saalfrank, and N.P. Ernsting, Femtosecond stimulated Raman
        spectroscopy of flavin after optical excitation, J. Phys. Chem.
        B 
115(13), 3656–3680 (2011),
        
http://dx.doi.org/10.1021/jp1117129
        [50] S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and
        P. Gilch, A femtosecond stimulated Raman spectrograph for the
        near ultraviolet, Appl. Phys. B 
85(4), 557–564 (2006),
        
http://dx.doi.org/10.1007/s00340-006-2386-8
        [51] H. Ando, B.P. Fingerhut, K.E. Dorfman, J.D. Biggs, and S.
        Mukamel, Femtosecond stimulated Raman spectroscopy of the
        cyclobutane thymine dimer repair mechanism: a computational
        study, J. Am. Chem. Soc. 
136(42), 14801–14810 (2014),
        
http://dx.doi.org/10.1021/ja5063955
        [52] J.R. Ferraro, K. Nakamoto, and C.W. Brown, 
Introductory
          Raman Spectroscopy (Academic Press, Amsterdam, The
        Netherlands, 2003),
        
http://store.elsevier.com/product.jsp?isbn=9780122541056
        [53] J. Dasgupta, R.R. Frontiera, K.C. Taylor, J.C. Lagarias,
        and R.A. Mathies, Ultrafast excited-state isomerization in
        phytochrome revealed by femtosecond stimulated Raman
        spectroscopy, Proc. Natl. Acad. Sci. USA 
106(6),
        1784–1789 (2009),
        
http://dx.doi.org/10.1073/pnas.0812056106
        [54] H.A. Frank and R.J. Cogdell, Carotenoids in photosynthesis,
        Photochem. Photobiol. 
63(3), 257–264 (1996),
        
http://dx.doi.org/10.1111/j.1751-1097.1996.tb03022.x
        [55] B. Demmig-Adams and W.W. Adams III, The role of xanthophyll
        cycle carotenoids in the protection of photosynthesis, Trends
        Plant Sci. 
1(1), 21–26 (1996),
        
http://dx.doi.org/10.1016/S1360-1385(96)80019-7
        [56] Y. Koyama, M. Kuki, P.O. Andersson, and T. Gillbro, Singlet
        excited states and the light-harvesting function of carotenoids
        in bacterial photosynthesis, Photochem. Photobiol. 
63(3),
        243–256 (1996),
        
http://dx.doi.org/10.1111/j.1751-1097.1996.tb03021.x
        [57] A. Young and G. Britton, 
Carotenoids in Photosynthesis
        (Springer Science & Business Media, Dordrecht, The
        Netherlands, 1993),
        
http://dx.doi.org/10.1007/978-94-011-2124-8
        [58] M. Kloz, R. van Grondelle, and J.T.M. Kennis, Correction
        for the time dependent inner filter effect caused by transient
        absorption in femtosecond stimulated Raman experiment, Chem.
        Phys. Lett. 
544, 94–101 (2012),
        
http://dx.doi.org/10.1016/j.cplett.2012.07.005
        [59] T. Noguchi, S. Kolaczkowski, C. Arbour, S. Aramaki, G.H.
        Atkinson, H. Hayashi, and M. Tasumi, Resonance Raman spectrum of
        the excited 2
†A
g state of β-carotene,
        Photochem. Photobiol. 
50(5), 603–609 (1989),
        
http://dx.doi.org/10.1111/j.1751-1097.1989.tb04315.x
        [60] D.W. McCamant, J.E. Kim, and R.A. Mathies, Vibrational
        relaxation in β-carotene probed by picosecond Stokes and
        anti-Stokes resonance Raman spectroscopy, J. Phys. Chem. A 
106(25),
        6030–6038 (2002),
        
http://dx.doi.org/10.1021/jp0203595
        [61] J.-P. Zhang, L.H. Skibsted, R. Fujii, and Y. Koyama,
        Transient absorption from the 1B
u+ state
        of all-trans-β-carotene newly identified in the near-infrared
        region, Photochem. Photobiol. 
73(3), 219–222 (2001),
        
http://dx.doi.org/10.1562/0031-8655(2001)0730219TAFTUS2.0.CO2
        [62] D.S. Larsen, E. Papagiannakis, I.H.M. van Stokkum, M.
        Vengris, J.T.M. Kennis, and R. van Grondelle, Excited state
        dynamics of β-carotene explored with dispersed multi-pulse
        transient absorption, Chem. Phys. Lett. 
381(5–6),
        733–742 (2003),
        
http://dx.doi.org/10.1016/j.cplett.2003.10.016
        [63] H. Hashimoto, Y. Koyama, Y. Hirata, and N. Mataga, S1 and
        T1 species of β-carotene generated by direct photoexcitation
        from the all-trans, 9-cis, 13-cis, and 15-cis isomers as
        revealed by picosecond transient absorption and transient Raman
        spectroscopies, J. Phys. Chem. 
95(8), 3072–3076 (1991),
        
http://dx.doi.org/10.1021/j100161a022
        [64] R.R. Frontiera, S. Shim, and R.A. Mathies, Origin of
        negative and dispersive features in anti-Stokes and resonance
        femtosecond stimulated Raman spectroscopy, J. Chem. Phys. 
129(6),
        064507 (2008),
        
http://dx.doi.org/10.1063/1.2966361
        [65] Z. Sun, Z. Jin, J. Lu, D.H. Zhang, and S.-Y. Lee, Wave
        packet theory of dynamic stimulated Raman spectra in femtosecond
        pump-probe spectroscopy, J. Chem. Phys. 
126(17), 174104
        (2007),
        
http://dx.doi.org/10.1063/1.2715593
        [66] D. Zigmantas, R.G. Hiller, V. Sundström, and T. Polívka,
        Carotenoid to chlorophyll energy transfer in the
        peridinin–chlorophyll-a–protein complex involves an
        intramolecular charge transfer state, Proc. Natl. Acad. Sci. USA
        
99(26), 16760–16765 (2002),
        
http://dx.doi.org/10.1073/pnas.262537599
        [67] V. Butkus, A. Gelzinis, R. Augulis, A. Gall, C. Büchel, B.
        Robert, D. Zigmantas, L. Valkunas, and D. Abramavicius,
        Coherence and population dynamics of chlorophyll excitations in
        FCP complex: Two-dimensional spectroscopy study, J. Chem. Phys.
        
142(21), 212414 (2015),
        
http://dx.doi.org/10.1063/1.4914098
        [68] E. Papagiannakis, J.T.M. Kennis, I.H.M. van Stokkum, R.J.
        Cogdell, and R. van Grondelle, An alternative
        carotenoid-to-bacteriochlorophyll energy transfer pathway in
        photosynthetic light harvesting, Proc. Natl. Acad. Sci. USA 
99(9),
        6017–6022 (2002),
        
http://dx.doi.org/10.1073/pnas.092626599
        [69] T. Polívka and V. Sundström, Dark excited states of
        carotenoids: Consensus and controversy, Chem. Phys. Lett. 
477(1–3),
        1–11 (2009),
        
http://dx.doi.org/10.1016/j.cplett.2009.06.011
        [70] E.E. Ostroumov, M.G.M.M. Reus, and A.R. Holzwarth, On the
        nature of the “dark S*” excited state of β-carotene, J. Phys.
        Chem. A 
115(16), 3698–3712 (2011),
        
http://dx.doi.org/10.1021/jp105385c