[PDF]    http://dx.doi.org/10.3952/physics.v56i1.3276

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 56, 49–54 (2016)


ESR SPECTROSCOPY OF ALANINE IMPACTED BY HIGH ENERGY IRRADIATIONS FOR WIDE RANGE DOSIMETRY
Tomas Čeponisa, Eugenijus Gaubasa, Jonas Veniusb, Aleksandras Cicinasb, Freddy Callensc, Jevgenij Kusakovskijc, Henk Vrielinckc, Kenichiro Mizohatad, Jyrki Raisanend, and Pertti Tikkanend
aVilnius University Institute of Applied Research, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: tomas.ceponis@ff.vu.lt
bNational Cancer Institute, Santariškių 1, LT-08660 Vilnius
cDepartment of Solid State Sciences, Ghent University, Krijgslaan 281 – S1, B-9000 Ghent, Belgium
dDepartment of Physics, Helsinki University, Pietari Kalmin katu 2, FI-00014 Helsinki, Finland

Received 26 June 2015; revised 20 July 2015; accepted 29 September 2015

The ESR spectrometry, based on alanine dosimeters, is a standard tool for dosimetry of different type ionizing radiations. The calibrated dosimeters and ESR readers operate rather reliably in the dose range up to 200 kGy. In this study, the ESR spectrometry of stable free radicals in alanine, induced by penetrative X- and γ-rays as well as neutron and stopped proton irradiations covering the dose range from a few Gy to a few MGy, has been performed in order to create the generalized calibration function for the wide range dosimetry. The simulations based on the cumulative generation of ESR active stable radicals R1, R2 and R3 enabled us to derive the generalized calibration model ascribed to the irradiation fluence from 1010 to 2 × 1016 particle/cm2 normalized using 1 MeV neutron equivalent.
Keywords: ESR spectroscopy, dosimetry, alanine
PACS: 76.30.-v, 87.53.Bn, 87.55.N-

AUKŠTŲJŲ ENERGIJŲ SPINDULIUOTĖMIS APŠVITINTO ALANINO ESR SPEKTROSKOPIJA PLATAUS DIAPAZONO DOZIMETRIJAI

Tomas Čeponisa, Eugenijus Gaubasa, Jonas Veniusb, Aleksandras Cicinasb, Freddy Callensc, Jevgenij Kusakovskijc, Henk Vrielinckc, Kenichiro Mizohatad, Jyrki Raisanend, Pertti Tikkanend
aVilniaus universiteto Taikomųjų mokslų institutas, Vilnius, Lietuva
bNacionalinis vėžio institutas, Vilnius, Lietuva
cGento universitetas, Gentas, Belgija
dHelsinkio universitetas, Helsinkis, Suomija

Aukštųjų energijų fizikos eksperimentinės įrangos ir dalelių greitintuvų aplinkos stebėsenai, branduolinių reaktorių aplinkos bei branduolinio kuro atliekų monitoringui, medicininėje diagnostikoje ir terapijoje labai svarbu registruoti jonizuojančiųjų spinduliuočių sukauptą foninę dozę, siekiant užtikrinti toje aplinkoje veikiančios elektroninės įrangos funkcionalumą, numatyti jos degradacijos trukmę ir įvertinti personalo radiacinę saugą. Minėtiems taikymams būtinas apšvitos dozės įvertinimas ir apšvitos dozės sąsajos su šaltinių spinduliuočių integriniu srautu – apšvitos įtėkiu, sukuriamu įvairaus tipo spinduliuočių. Šiame darbe buvo ištirtos elektronų sukinių rezonansų (ESR) spektro smailių alanine amplitudės priklausomybės nuo apšvitos dozės (plačiame, 0,5 Gy – 1 MGy intervale) paveikus įvairiomis spinduliuotėmis (60 ir 6 MeV Rentgeno, 355 keV gama, 23 MeV spalatoriaus neutronais, 8 MeV protonais). Ši dozinė ESR signalų alanine priklausomybė buvo susieta su įtėkių skale, kalibruota 1 MeV energijos neutronų ekvivalentinėms pažeidoms. Sukurti fenomenologiniai modeliai kalibracinių įtėkių ir dozių sąsajos funkcijoms aproksimuoti.

References / Nuorodos

[1] W.L. McLaughlin, ESR dosimetry, Radiat. Prot. Dosim. 47(1–4), 255–262 (1993),
http://rpd.oxfordjournals.org/content/47/1-4/255.abstract
[2] Bruker (online), accessed: 26/06/2015,
https://www.bruker.com/products/mr/epr/e-scan/alanine-dosimeter-reader/overview.html
[3] J. Rotblat and J.A. Simmons, Dose-response relationship in the yield of radiation-induced free radicals in amino acids, Phys. Med. Biol. 7, 489–497 (1963),
http://dx.doi.org/10.1088/0031-9155/7/4/310
[4] F. Callens, K. Van Laere, W. Mondelaers, P. Matthys, and E. Boesman, A study of the composite character of the ESR spectrum of alanine, Appl. Radiat. Isot. 47(11/12), 1241–1250 (1996),
http://dx.doi.org/10.1016/S0969-8043(96)00166-2
[5] K.J. Olsen, J.W. Hansen, and M. Wille, Response of the alanine radiation dosemeter to high-energy photon and electron beams, Phys. Med. Biol. 35(1), 43–52 (1990),
http://dx.doi.org/10.1088/0031-9155/35/1/005
[6] E. Malinen, M.Z. Heydari, E. Sagstuen, and E.O. Hole, Alanine radicals, Part 3: Properties of the components contributing to the EPR spectrum of X-irradiated alanine dosimeters, Radiat. Res. 159(1), 23–32 (2003),
http://dx.doi.org/10.1667/0033-7587(2003)159[0023:ARPPOT]2.0.CO;2
[7] M.P.R. Waligorski, G. Danialy, K. S. Loh, and R. Katz, The response of the alanine detector after charged-particle and neutron irradiations, Appl. Radiat. Isot. 40(10–12), 923–933 (1989),
http://dx.doi.org/10.1016/0883-2889(89)90018-X
[8] S. Kuroda and I. Miyagawa, ENDOR study of an irradiated crystal of L-alanine: environment of the stable CH3CHCO2– radical, J. Chem. Phys. 76, 3933–3944 (1982),
http://dx.doi.org/10.1063/1.443510
[9] K. Matsuki and I. Miyagawa, ENDOR study of an irradiated crystal of L-alanine: structure and the environment of the unstable CH3CHCO2– radical, J. Chem. Phys. 76, 3945–3952 (1982),
http://dx.doi.org/10.1063/1.443511
[10] E. Sagstuen, E.O. Hole, S.R. Haugedal, and W.H. Nelson, Alanine radicals: structure determination by EPR and ENDOR of single crystals X-irradiated at 295 K, J. Phys. Chem. A 101(50), 9763–9772 (1997),
http://dx.doi.org/10.1021/jp972158k
[11] P. Lahorte, F. De Proft, G. Vanhaelewyn, B. Masshaele, P. Cauwels, F. Callens, P. Geerlings, and W. Mondelaers, Density functional calculations of hyperfine coupling constants in alanine-derived radicals, J. Phys. Chem. A 103(33), 6650–6657 (1999),
http://dx.doi.org/10.1021/jp990942u
[12] T.L. Petrenko, Transformation and structure of cation radicals in L-α-alanine, J. Phys. Chem. A 106(1), 149–156 (2002),
http://dx.doi.org/10.1021/jp0106395
[13] E. Pauwels, H. De Cooman, M. Waroquier, E.O. Holec, and E. Sagstuenc, Solved? The reductive radiation chemistry of alanine, Phys. Chem. Chem. Phys. 16, 2475–2482 (2014),
http://dx.doi.org/10.1039/C3CP54441A
[14] M. Fuerstner, I. Brunner, D. Forkel-Wirth, S. Mayer, H. Menzel, H. Vincke, and I. Floret, First calibration of alanine and radio-photo-luminescence dosemeters to a hadronic irradiation environment, in: IEEE Proccedings of 2005 Particle Accelerator Conference (Knoxville, USA, 2005) pp. 3097–3099,
http://dx.doi.org/10.1109/PAC.2005.1591376
[15] H.M. Gerstenberg, J.W. Hansen, J.J. Coyne, and J. Zoetelief, Calculations of the relative effectiveness of alanine for neutrons with energies up to 17.1 MeV, Radiat. Prot. Dosim. 31(1–4), 85–89 (1990),
http://rpd.oxfordjournals.org/content/31/1-4/85.abstract
[16] Practice for Use of Alanine-EPR Dosimetry System, ISO International Standard ISO/WD 15566.1 (1998),
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=28214
[17] G.R. Eaton, S.S. Eaton, D.P. Barr, and R.T. Weber, Quantitative EPR (Springer-Verlag, Wien, 2010),
http://dx.doi.org/10.1007/978-3-211-92948-3
[18] P.P. Pawar and G.K. Bichile, Molar extinction coefficients of some amino acids, J. Chem. Pharm. Res. 3(5), 41–50 (2011),
http://jocpr.com/vol3-iss5-2011/JCPR-2011-3-5-41-50.pdf
[19] P.P. Pawar and G.K. Bichile, Measurement of mass and linear attenuation coefficients of gamma-rays of alanine for 0.662, 1.170, 1.280 and 1.330 MeV photons, J. Appl. Chem. 1(1), 53–58 (2012)
[20] S.M. Seltzer, Calculation of photon mass energy-transfer and mass energy-absorption coefficients, Radiat. Res. 136(2), 147–170 (1993),
http://dx.doi.org/10.2307/3578607
[21] J.F. Ziegler, J.P. Biersack, and M.D. Ziegler, The Stopping and Range of Ions in Matter (SRIM, Chester, 2008),
http://www.srim.org/