[PDF]    http://dx.doi.org/10.3952/physics.v56i2.3303

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 56, 79–85 (2016)


THEORETICAL STUDY OF α- AND γ-V2O5 DOUBLE-WALLED NANOTUBES
Vitaly V. Porsev, Andrei V. Bandura, and Robert A. Evarestov
St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
E-mail: v.porsev@spbu.ru

Received 4 October 2015; accepted 21 June 2016

The first-principles calculations of the atomic and electronic structure of double-walled nanotubes (DWNTs) of γ-V2O5 have been performed and the obtained properties have been compared with those of α-V2O5 ones. The DWNT structure relaxation leads to the formation of two types of local regions: (1) adhesion regions and (2) puckering regions. Although the structure of adhesion regions of α-V2O5 DWNTs is close to the structure of bulk α-V2O5, this is not the case for γ-V2O5 DWNTs. The resulting structure of adhesion regions in γ-V2O5 SWNTs allows us to assume the existence of hypothetical stable phases, with one of them resembling the experimentally observed R-Nb2O5 and (V0.7Mo0.3)2O5 crystals.
Keywords: vanadium pentoxide, nanotubes, DFT
PACS: 61.43.Bn, 61.46.Np

TEORINIS α- IR γ-V2O5 DVIGUBŲ SIENELIŲ NANOVAMZDELIŲ TYRIMAS

Vitaly V. Porsev, Andrei V. Bandura, Robert A. Evarestov
Sankt Peterburgo valstybinis universitetas, Rusija


References / Nuorodos

[1] Y. Wang, K. Takahashi, H. Shang, and G. Cao, Synthesis and electrochemical properties of vanadium pentoxide nanotube arrays, J. Phys. Chem. B 109(8), 3085–3088 (2005),
http://dx.doi.org/10.1021/jp044286w
[2] J.S. Bonso, A. Rahy, S.D. Perera, N. Nour, O. Seitz, Y.J. Chabal, K.J. Balkus Jr., J.P. Ferraris, and D.J. Yang, Exfoliated graphite nanoplatelets–V2O5 nanotube composite electrodes for supercapacitors, J. Power Sources 203, 227–232 (2012),
http://dx.doi.org/10.1016/j.jpowsour.2011.09.084
[3] G. Gu, M. Schmid, P.-W. Chiu, A. Minett, J. Fraysse, G.-T. Kim, S. Roth, M. Kozlov, E. Muñoz, and R.H. Baughman, V2O5 nanofibre sheet actuators, Nature Mater. 2, 316–319 (2003),
http://dx.doi.org/10.1038/nmat880
[4] C. Zhou, L. Mai, Y. Liu, Y. Qi, Y. Dai, and W. Chen, Synthesis and field emission property of V2O5·nH2O nanotube arrays, J. Phys. Chem. C 111(23), 8202–8205 (2007),
http://dx.doi.org/10.1021/jp0722509
[5] P.M. Ajayan, O. Stephan, P. Redlich, and C. Colliex, Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures, Nature 375, 564–567 (1995),
http://dx.doi.org/10.1038/375564a0
[6] R.A. Evarestov, Theoretical Modeling of Inorganic Nanostructures. Symmetry and Ab-initio Calculations of Nanolayers, Nanotubes and Nanowires, Springer Series in NanoScience and Technology (Springer, Berlin–Heidelberg, 2015),
http://dx.doi.org/10.1007/978-3-662-44581-5
[7] G. Zhu, Z. Qu, G. Zhuang, Q. Xie, Q. Meng, and J. Wang, CO oxidation by lattice oxygen on V2O5 nanotubes, J. Phys. Chem. C 115(30), 14806–14811 (2011),
http://dx.doi.org/10.1021/jp2026175
[8] J.M. Cocciantelli, P. Gravereau, J.P. Doumerc, M. Pouchard, and P. Hagenmuller, On the preparation and characterization of a new polymorph of V2O5, J. Solid State Chem. 93(2), 497–502 (1991),
http://dx.doi.org/10.1016/0022-4596(91)90323-A
[9] M.B. Smirnov, E.M. Roginskii, V.Yu. Kazimirov, K.S. Smirnov, R. Baddour-Hadjean, J.P. Pereira-Ramos, and V.S. Zhandun, Spectroscopic and computational study of structural changes in γ-LiV2O5 cathodic material induced by lithium intercalation, J. Phys. Chem. C 119(36), 20801–20809 (2015),
http://dx.doi.org/10.1021/acs.jpcc.5b05540
[10] N. Pinna, M. Willinger, K. Weiss, J. Urban, and R. Schlögl, Local structure of nanoscopic materials: V2O5 nanorods and nanowires, Nano Lett. 3(8), 1131–1134 (2003),
http://dx.doi.org/10.1021/nl034326s
[11] V.V. Porsev, A.V. Bandura, and R.A. Evarestov, Hybrid Hartree–Fock-density functional theory study of V2O5 three phases: Comparison of bulk and layer stability, electron and phonon properties, Acta Mater. 75, 246–258 (2014),
http://dx.doi.org/10.1016/j.actamat.2014.04.068
[12] V.V. Porsev, A.V. Bandura, and R.A. Evarestov, Ab initio modeling of single wall nanotubes folded from α- and γ-V2O5 monolayers: structural, electronic and vibrational properties, CrystEngComm 17(17), 3277–3285 (2015),
http://dx.doi.org/10.1039/C5CE00144G
[13] V.V. Porsev, A.V. Bandura, and R.A. Evarestov, Theoretical study of α-V2O5-based double-wall nanotubes, ChemPhysChem 16(14), 3007–3014 (2015),
http://dx.doi.org/10.1002/cphc.201500354
[14] J.P. Perdew, K. Burke, and M. Ernzerhof, Rationale for mixing exact exchange with density functional approximations, J. Chem. Phys. 105(22), 9982–9985 (1996),
http://dx.doi.org/10.1063/1.472933
[15] C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, J. Chem. Phys. 110, 6158–6170 (1999),
http://dx.doi.org/10.1063/1.478522
[16] R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, P. D'Arco, and M. Llunell, CRYSTAL09 User's Manual (University of Torino, Torino, 2010),
http://www.crystal.unito.it/Manuals/crystal09.pdf
[17] R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V.R. Saunders, and C.M. Zicovich-Wilson, CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals, Z. Kristallogr. 220, 571–573 (2005),
http://dx.doi.org/10.1524/zkri.220.5.571.65065
[18] M.F. Peintinger, D.V. Oliveira, and T. Bredow, Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations, J. Comput. Chem. 34(6), 451–459 (2013),
http://dx.doi.org/10.1002/jcc.23153
[19] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787–1799 (2006),
http://dx.doi.org/10.1002/jcc.20495
[20] T. Bučko, J. Hafner, S. Lebègue, and J.G. Ángyán, Improved description of the structure of molecular and layered crystals: Ab initio DFT calculations with van der Waals corrections, J. Phys. Chem. A 114(43), 11814–11824 (2010),
http://dx.doi.org/10.1021/jp106469x
[21] A.V. Bandura, R.A. Evarestov, and S.I. Lukyanov, Structure reconstruction of TiO2-based multiwall nanotubes: first-principles calculations, Phys. Chem. Chem. Phys. 16, 14781–14791 (2014),
http://dx.doi.org/10.1039/c4cp00903g
[22] H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188–5192 (1976),
http://dx.doi.org/10.1103/PhysRevB.13.5188
[23] V. Shklover, T. Haibach, F. Ried, R. Nesper, and P. Novák, Crystal structure of the product of Mg2+ insertion into V2O5 single crystals, J. Solid State Chem. 123(2), 317–323 (1996),
http://dx.doi.org/10.1006/jssc.1996.0186
[24] R. Enjalbert and J. Galy, A refinement of the structure of V2O5, Acta Cryst. C 42, 1467–1469 (1986),
http://dx.doi.org/10.1107/S0108270186091825
[25] J.M. Cocciantelli, P. Gravereau, J.P. Doumerc, M. Pouchard, and P. Hagenmuller, On the preparation and characterization of a new polymorph of V2O5, J. Solid State Chem. 93(2), 497–502 (1991),
http://dx.doi.org/10.1016/0022-4596(91)90323-A
[26] A. Ghosh, E.J. Ra, M. Jin, H.-K. Jeong, T.H. Kim, C. Biswas, and Y.H. Lee, High pseudocapacitance from ultrathin V2O5 films electrodeposited on self-standing carbon-nanofiber paper, Adv. Funct. Mater. 21(13), 2541–2547 (2011),
http://dx.doi.org/10.1002/adfm.201002603
[27] R. Gruehn, Eine weitere neue Modifikation des Niobpentoxides, J. Less Common Met. 11(2), 119–126 (1966),
http://dx.doi.org/10.1016/0022-5088(66)90076-2
[28] L. Kihlborg, The crystal structure of (Mo0.3V0.7)2O5 of R-Nb2O5 type and a comparison with the structure of V2O5 and V2MoO8, Acta Chem. Scand. 21, 2495–2502 (1967),
http://dx.doi.org/10.3891/acta.chem.scand.21-2495
[29] J. Galy, Vanadium pentoxide and vanadium oxide bronzes – Structural chemistry of single (S) and double (D) layer MxV2O5 phases, J. Solid State Chem. 100, 229–245 (1992),
http://dx.doi.org/10.1016/0022-4596(92)90097-F
[30] H.P. Beck and S. Kohaut, A DFT study on the correlation between topology and Bader charges: Part II, effects of compression and dilatation of V2O5, Solid State Sci. 43, 1–8 (2015),
http://dx.doi.org/10.1016/j.solidstatesciences.2015.03.011