[PDF]    http://dx.doi.org/10.3952/physics.v56i2.3307

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 56, 111–123 (2016)


INVESTIGATION OF 137Cs AND PLUTONIUM ISOTOPE SORPTION–DESORPTION IN BIO- AND SYNTHETIC MATERIALS
Benedikta Lukšienė, Zita Žukauskaitė, Nikolaj Tarasiuk, Evaldas Maceika, Vitold Filistovič, Šarūnas Buivydas, Laima Nedzveckienė, and Dalia Jasinevičienė
Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: bena.luksiene@ftmc.lt; zita.zukauskaite@ftmc.lt

Received 21 May 2015; revised 5 March 2016; accepted 21 June 2016

Investigations on the pre-concentration of radionuclides (137Cs and plutonium isotopes) from fresh water on solid matrices are presented in this study. A particular focus was given to an innovative physico-chemical removal process such as adsorption of radionuclides from an aqueous medium on new type adsorbents, environmental-friendly materials. Sorption of the tested radionuclides from the lake water solution by environmental assays and synthetic sorbents was compared. Lake water was analyzed for main anions, micro- and macroelements, using ion and atomic absorption chromatography methods, respectively. Batch type and dynamic flow column laboratory experiments were performed. The sorption–desorption capacity of radionuclides by the tested sorbents was estimated based on the results of α- and γ-spectrometric measurements. According to the removal efficiency results, moss can be considered as the best sorbent for plutonium of the tested environmental-friendly sorbents, whereas the moss sorption capacity exceeded even that of the tested synthetic ones. The highest 137Cs removal efficiency from the lake water solution was obtained for granular activated carbon. Application of the dynamic flow method carried out in situ confirmed the reversibility of sorbed background 137Cs activity in the moss observed during the batch type experiments, and the method of the moss bed column turned to be unfit for the pre-concentration of 137Cs from the lake water.
Application of a single moss bed column for the 137Cs and plutonium isotope pre-concentration for the first time carried out in situ allowed us to determine the activity concentration of 239,240Pu and 238Pu in the lake water – 4.87±0.98 and 0.67±0.21 mBq/m3, respectively.
The reversible 137Cs and different plutonium sorption in the moss apparently indicates different binding properties of these radionuclides to the moss, therefore further investigations on this issue are foreseen.
Keywords: radionuclide, sorbents, batch experiments, dynamic flow method
PACS: 29.87.+g, 28.60.+s, 29.30.Kv

137Cs IR PLUTONIO IZOTOPŲ SORBCIJOS-DESORBCIJOS BIOLOGINĖSE IR SINTETINĖSE MEDŽIAGOSE TYRIMAS

Benedikta Lukšienė, Zita Žukauskaitė, Nikolaj Tarasiuk, Evaldas Maceika, Vitold Filistovič, Šarūnas Buivydas, Laima Nedzveckienė, Dalia Jasinevičienė
Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Darbe pristatomi radionuklidų (137Cs ir plutonio izotopų) sukoncentravimo iš gėlo vandens kietose matricose tyrimai. Ypatingas dėmesys skirtas inovatyviam fizikiniam-cheminiam radionuklidų pašalinimo iš vandeninės terpės procesui – adsorbcijai, naudojant naujo tipo sorbentus, gamtines medžiagas. Tyrimai atlikti į ežero vandens tirpalą įterpus 137Cs ir 236Pu izotopus. Ežero vandenyje nustatyti pagrindiniai anijonai, mikro ir makroelementai, pritaikant jonų ir atominės absorbcijos chromatografijos metodus. Radionuklidų sorbcijos-desorbcijos geba buvo įvertinta pagal α- ir γ-spektrometrinių matavimų duomenis. Gamtinių ir sintetinių sorbentų sorbcinė geba buvo palyginta taikant statinius (purtant) ir dinaminius kolonėlių (pratekant) metodus.
Pagal pašalinimo iš tirpalo efektyvumo rezultatus, iš visų tirtųjų gamtinių medžiagų, išskyrus molį, samanos gali būti laikomos geriausiu plutonio sorbentu, o samanų sorbcinė geba buvo didesnė net už sintetinius sorbentus. Didžiausiu 137Cs iš ežero vandens tirpalo pašalinimo efektyvumu pasižymėjo granuliuotos aktyvintos anglies kolonėlės.
Pritaikius dinaminį metodą, filtruojant per samanų kolonėles natūralų ežero vandenį in situ, pasitvirtino statiniu metodu laboratorijoje gauti rezultatai apie 137Cs grįžtamąją sorbciją samanose. Priešingai negu 137Cs, toje pačioje samanų kolonėlėje plutonio izotopai buvo sorbuojami iš ežero vandens. Pagal samanų kolonėlėje akumuliuotų radionuklidų α-spektrometrinius matavimus po radiocheminės analizės nustatyta, kad 239, 240Pu aktyvumo koncentracija ežero vandenyje yra 4,87±0,98 mBq/m3, o 238Pu – 0,67±0,21 mBq/m3.
Gauti skirtingi 137Cs ir plutonio sorbcijos rezultatai, naudojant samanas kaip sorbentą, nurodo skirtingas šių radionuklidų prisijungimo prie samanų savybes, todėl numatomi tolimesni adsorbcijos tyrimai.

References / Nuorodos

[1] D. Marčiulionienė, D. Kiponas, and D. Hansen, Accumulation of technogenic radionuclides in the environment of Ignalina NPP, Ekologija 1, 52–59 (2001) [in Lithuanian],
https://inis.iaea.org/search/search.aspx?orig_q=RN:33048689
[2] J. Mažeika, Radionuclides in Geoenvironment of Lithuania (Institute of Geology, Vilnius, 2002)
[3] V. Mironov, V. Kudrjashov, F. Yiou, and G.M. Raisbeck, Use of 129I and 137Cs in soils for the estimation of 131I deposition in Belarus as a result of the Chernobyl accident, J. Environ. Radioact. 59, 293–307 (2002),
http://dx.doi.org/10.1016/S0265-931X(01)00080-7
[4] V. Remeikis, R. Gvozdaitė, R. Druteikienė, A. Plukis, N. Tarasiuk, and N. Špirkauskaitė, Plutonium and americium in sediments of Lithuanian lakes, Nukleonika 50(2), 61–66 (2005),
http://www.ichtj.waw.pl/nukleonikaa/?p=719
[5] D. Butkus and M. Konstantinova, Studies of long-term vertical migration of 137Cs in soil, Environ. Chem. Phys. 25, 75–80 (2003)
[6] P. Carbol, D. Solatie, N. Erdmann, T. Nylèn, and M. Betti, Deposition and distribution of Chernobyl fallout fission products and actinides in a Russian soil profile, J. Environ. Radioact. 68(1), 27–46 (2003),
http://dx.doi.org/10.1016/S0265-931X(03)00027-4
[7] B. Lukšienė, R. Druteikienė, R. Gvozdaitė, and A. Gudelis, Comparative analysis of Pu-239, Cs-137, Pb-210 and K-40 spatial distributions in the top soil layer at the Baltic coast, J. Environ. Radioact. 87(3), 305–314 (2006),
http://dx.doi.org/10.1016/j.jenvrad.2005.12.005
[8] R. Druteikienė, R. Morkūnienė, and B. Lukšienė, Distribution of artificial radionuclides in the Baltic seaside environment, Lith. J. Phys. 51(1), 75–81 (2011),
http://dx.doi.org/10.3952/lithjphys.51107
[9] B. Lukšienė, E. Maceika, N. Tarasiuk, E. Koviazina, V. Filistovič, Š. Buivydas, and A. Puzas, On peculiarities of vertical distribution of 239,240Pu, 238Pu and 137Cs activity concentrations and their ratios in lake sediments and soils, J. Radioanal. Nucl. Chem. 300, 277–286 (2014),
http://dx.doi.org/10.1007/s10967-014-3026-0
[10] L. Popov, G. Mihailova, and I. Naidenov, Determination of activity ratios of 238,239+240,241Pu, 241Am, 134,137Cs, and 90Sr in Bulgarian soils, J. Radioanal. Nucl. Chem. 285, 223–237 (2010),
http://dx.doi.org/10.1007/s10967-010-0550-4
[11] P.P. Povinec, I. Sýkora, K. Holý, M. Gera, A. Kováčik, and L. Brest’áková, Aerosol radioactivity record in Bratislava/Slovakia following the Fukushima accident – A comparison with global fallout and the Chernobyl accident, J. Environ. Radioact. 114, 81–88 (2012),
http://dx.doi.org/10.1016/j.jenvrad.2012.05.008
[12] B. Lukšienė, A. Puzas, V. Remeikis, R. Druteikienė, A. Gudelis, R. Gvozdaitė, Š. Buivydas, R. Davidonis, and G. Kandrotas, Spatial patterns and ratios of 137Cs, 90Sr, and Pu isotopes in the top layer of undisturbed meadow soils as indicators for contamination origin, Environ. Monit. Assess. 187, 268 (2015),
http://dx.doi.org/10.1007/s10661-015-4491-9
[13] UNSCEAR, Ionizing Radiation: Sources and Biological Effects. Report to the General Assembly, with annexes (UNSCEAR, New York, NY, 1982),
http://www.unscear.org/unscear/en/publications/1982.html
[14] S. Babel and T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater. 97(1–3), 219–243 (2003),
http://dx.doi.org/10.1016/S0304-3894(02)00263-7
[15] F.E. Soetaredjo, A. Kurniawan, L.K. Ong, D.R. Widagdyo, and S. Ismadji, Investigation of the continuous flow sorption of heavy metals in a biomass-packed column: revisiting the Thomas design model for correlation of binary component systems, RSC Adv. 4, 52856–52870 (2014),
http://dx.doi.org/10.1039/C4RA06425A
[16] M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arabian J. Chem. 4(4), 361–377 (2011),
http://dx.doi.org/10.1016/j.arabjc.2010.07.019
[17] J. Wang and C. Chen, Biosorbents for heavy metals removal and their future, J. Biotech. Adv. 27(2), 195–226 (2009),
http://dx.doi.org/10.1016/j.biotechadv.2008.11.002
[18] M. Sravani, M. Manasa, V. Sridevi, and M.V.V. Chandana Lakshmi, A competitive effect of Cu (II) and Pb (II) on biosorption by Aspergillus Niger NCIM (616) using ICPMS, Res. J. Pharm. Biol. Chem. Sci. 3(4), 1408–1416 (2012),
http://www.rjpbcs.com/pdf/2012_3(4)/[157].pdf
[19] B. Volesky and Z.R. Holan, Biosorption of heavy metals, Biotechnol. Progr. 11(3), 235–250 (1995),
http://dx.doi.org/10.1021/bp00033a001
[20] D. Park, Y.S. Yun, and J.M. Park, The past, present, and future trends of biosorption, Biotech. Bioprocess Eng. 15(1), 86–102 (2010),
http://dx.doi.org/10.1007/s12257-009-0199-4
[21] G. Crini and P.M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal by aqueous solutions by adsorption processes using batch studies: a review of recent literature, Prog. Polym. Sci. 33, 399–447 (2008),
http://dx.doi.org/10.1016/j.progpolymsci.2007.11.001
[22] M. Eriksson, E. Holm, P. Roos, and H. Dahlgaard, Distribution and flux of 238Pu, 239,240Pu, 241Am, 137Cs and 210Pb to high arctic lakes in the Thule district (Greenland), J. Environ. Radioact. 75(3), 285–299 (2004),
http://dx.doi.org/10.1016/j.jenvrad.2003.12.007
[23] M. Lusa, J. Lehto, A. Leskinen, and T. Jaakkola, 137Cs, 239,240Pu and 241Am in bottom sediments and surface water of Lake Päijänne, Finland, J. Environ. Radioact. 100(4), 468–476 (2009),
http://dx.doi.org/10.1016/j.jenvrad.2009.03.006
[24] A. Moisejenkova, N. Tarasiuk, E. Koviazina, E. Maceika, and A. Girgždys, 137Cs in lake Tapeliai, Lithuania, Lith. J. Phys. 52(3), 238–252 (2012),
http://dx.doi.org/10.3952/lithjphys.52308
[25] N. Tarasiuk, E. Koviazina, and V. Kubarevičienė, On seasonal variations of radiocesium speciation in the surface sediments of Lake Juodis, Lithuania, J. Environ. Radioact. 99(1), 199–210 (2008),
http://dx.doi.org/10.1016/j.jenvrad.2007.10.014
[26] V. Putyrskaya, E. Klemt, and S. Röllin, Migration of 137Cs in tributaries, lake water and sediment of Lago Maggiore (Italy, Switzerland) – analysis and comparison with Lago di Lugano and other lakes, J. Environ. Radioact. 100(1), 35–48 (2009),
http://dx.doi.org/10.1016/j.jenvrad.2008.10.005
[27] P. Kalač, A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms, J. Sci. Food Agric. 93(2), 209–218 (2013),
http://dx.doi.org/10.1002/jsfa.5960
[28] M. Rinaudo, Chitin and chitosan: Properties and applications, Prog. Polym. Sci. 31, 603–632 (2006),
http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001
[29] V.N. Kosyakov, N.G. Yakovlev, and I.E. Veleshko, Application of chitin-containing fiber material “mycoton” for actinide adsorption, J. Nucl. Sci. Technol. 39(3), 508–511 (2002),
http://dx.doi.org/10.1080/00223131.2002.10875518
[30] M. Riazi, A.R. Keshtkar, and M.A. Moosavian, Batch and continuous fixed-bed column biosorption of thorium (IV) from aqueous solutions: equilibrium and dynamic modeling, J. Radioanal. Nucl. Chem. 301(2), 493–503 (2014),
http://dx.doi.org/10.1007/s10967-014-3129-7
[31] A.F. Seliman, Y.F. Lasheen, M.A.E. Youssief, M.M. Abo-Aly, and F.A. Shehata, Removal of some radionuclides from contaminated solution using natural clay: bentonite, J. Radioanal. Nucl. Chem. 300(3), 969–979 (2014),
http://dx.doi.org/10.1007/s10967-014-3027-z
[32] A. Lerman, D.M. Imboden, and J.R. Gat, Physics and Chemistry of Lakes, 2nd ed. (Springer-Verlag, Berlin, Heidelberg, 1995) p. 333,
http://dx.doi.org/10.1007/978-3-642-85132-2
[33] G.N. Pshinko, L.N. Puzyrnaya, S.A. Kobets, V.M. Fedorova, A.A. Kosorukov, and V.Ya. Demchenko, Layered double hydroxide of Zn and Al, intercalated with hexacyanoferrate(II) ions, as a sorbent for removing cesium radionuclides from aqueous solutions, Radiochem. 57(3), 259–265 (2015),
http://dx.doi.org/10.1134/S1066362215030066
[34] K.M. Krupka, D.I. Kaplan, G. Whelan, R.J. Serne, and S.V. Mattigod, Understanding Variation in Partition Coefficient, Kd, Values. Vol. II: Review of Geochemistry and Available Kd Values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium (3H) and Uranium, EPA 402-R-99-0048 (Office of Air and Radiation, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C., 1999),
http://www.epa.gov/radiation/technology/partition.htm
[35] Š. Palágyi and H. Vodičková, Sorption and desorption of 125I, 137Cs+, 85Sr2+ and 152,154Eu3+ on disturbed soils under dynamic flow and static batch conditions, J. Radioanal. Nucl. Chem. 280(1), 3–14 (2009),
http://dx.doi.org/10.1007/s10967-008-7436-8
[36] D. Li, D.I. Kaplan, A.S. Knox, K.P. Crapse, and D.P. Diprete, Aqueous 99Tc, 129I and 137Cs removal from contaminated groundwater and sediments using highly effective low-cost sorbents, J. Environ. Radioact. 136, 56–63 (2014),
http://dx.doi.org/10.1016/j.jenvrad.2014.05.010
[37] G. Lujanienė, S. Motiejūnas, and J. Šapolaitė, Sorption of Cs, Pu and Am on clay minerals, J. Radioanal. Nucl. Chem. 274(2), 345–353 (2007),
http://dx.doi.org/10.1007/s10967-007-1121-1