[PDF]    http://dx.doi.org/10.3952/physics.v56i4.3416

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 56, 200–206 (2016)


THE CHARGE CARRIER CAPTURE–EMISSION PROCESS – THE MAIN SOURCE OF THE LOW-FREQUENCY NOISE IN HOMOGENEOUS SEMICONDUCTORS
Vilius Palenskis
National Center for Physical Sciences and Technology, Faculty of Physics, Vilnius University, Saulėtekio 3, LT-10222 Vilnius, Lithuania
E-mail: vilius.palenskis@ff.vu.lt

Received 10 June 2016; revised 22 July 2016; accepted 23 September 2016

The possibility of determination of the number of localized capture centers of defects (relaxators) that cause low-frequency noise in a particular frequency range has been investigated. Here it is shown that a minimum number of relaxators is needed to generate 1/f type low-frequency noise only when relaxation times are arbitrarily distributed one-by-one in every two-octave range. The expression for estimation of the low-frequency noise level of the sample under test is presented. The presented expression for 1/f noise explains not only the noise level dependence both on the frequency and number of defects in the sample but also the observed noise intensity dependence on the mobility of free charge carriers. It is shown that the main source that causes low-frequency noise in homogeneous semiconductors is the charge carrier capture–emission process.
Keywords: low-frequency noise, capture and emission of charge carriers, defects, RTS, Lorentzian spectrum
PACS: 05.40.Ca, 07.50.Hp, 71.55.-i, 72.70.+m

KRŪVININKŲ PAGAVIMAS IR JŲ IŠLAISVINIMAS – PAGRINDINIS VIENALYČIŲ PUSLAIDININKIŲ ŽEMADAŽNIO TRIUKŠMO ŠALTINIS

Vilius Palenskis
Nacionalinis fizinių ir technologijos mokslų centras, Vilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva

Atlikta detali homogeninių medžiagų žemadažnio (1/f) triukšmo analizė parodė, kad tiriamojo bandinio varžos fliuktuacijų spektrinio tankio atvirkštinis proporcingumas laisvųjų krūvininkų skaičiui bandinyje gali būti vertinamas tik kaip atvirkštinis proporcingumas bandinio tūriui. Matavimo ir skaičiavimo rezultatai rodo, kad žemadažnio triukšmo spektras vienareikšmiškai gali būti išreikštas Lorenco pavidalo spektrais, įskaitant atsitiktinai pasiskirsčiusias relaksacijų trukmes labai plačiame intervale.
Įvertintas mažiausias relaksatorių skaičius, galintis sukurti 1/f pavidalo triukšmo spektrą tam tikrame dažnių intervale. Parodyta, kad krūvininkų judrio fliuktuacijos gali pasireikšti tik kaip antrinis reiškinys, atsirandantis defektuose kintant sklaidos centrų skaičiui dėl krūvininkų pagavimo ir jų išlaisvinimo iš lokalizuotų centrų. Pateikta kiekybinė išraiška, leidžianti pagal išmatuotą žemadažnį triukšmą tam tikrame dažnių intervale įvertinti aktyvių pagavimo centrų skaičių bandinyje, lemiantį išmatuotą triukšmą.


References / Nuorodos

[1] J.H.J. Lorteije and A.M.H. Hoppenbrouwers, Amplitude modulation by 1/f noise in resistors results in 1/Δf noise, Philips Res. Repts. 26, 29–39 (1971)
[2] B.K. Jones and J. Francis, Direct correlation between 1/f and other noise sources, J. Phys. D 8, 1172–1176 (1975),
https://doi.org/10.1088/0022-3727/8/10/003
[3] V.P. Palenskis, G.E. Leont'ev, and H.S. Mykolaitis, On the origin of the 1/f noise in linear resistors and p-n junctions, Radiotekh. Elektron. 21, 2433–2434 (1976) [in Russian, Radio Eng. Electron. Phys.]
[4] R.F Voss and J. Clarke, 1/f noise from systems in thermal equilibrium, Phys. Rev. Lett. 36, 42–45 (1976),
https://doi.org/10.1103/PhysRevLett.36.42
[5] F.N. Hooge, Discussion of recent experiment on 1/f noise, Physica 60, 130–144 (1972),
https://doi.org/10.1016/0031-8914(72)90226-1
[6] F.H. Hooge, T.G.M. Kleinpenning, and L.K.J. Vandamme, Experimental studies on 1/f noise, Rep. Progr. Phys. 44, 479–532 (1981),
https://doi.org/10.1088/0034-4885/44/5/001
[7] P. Dutta and P.M. Horn, Low-frequency fluctuations in solids: 1/f noise, Rev. Mod. Phys. 53, 497–516 (1981),
https://doi.org/10.1103/RevModPhys.53.497
[8] B. Pelegrini, One model of flicker, burst, and generation-recombination noises, Phys. Rev. B 24, 7071–7083 (1981),
https://doi.org/10.1103/PhysRevB.24.7071
[9] A. Van der Ziel, A Noise in Solid State Devices and Circuits (Wiley-Interscience Publications, John Wiley & Sons, New York, 1986)
[10] A.L. McWhorter, in: Semiconductor Surface Physics, ed. R.H. Kingstone (University of Pensylvania Press, 1957) pp. 207–228
[11] M.B. Weissman, 1/f noise and other slow, nonexponential kinetics in condensed matter, Rev. Mod. Phys. 60, 537–571 (1988),
https://doi.org/10.1103/RevModPhys.60.537
[12] M.J. Kirton and M.J. Uren, Noise in solid-state microstructures: A new perspective on individual defects, interface states and low-frequency (1/f) noise, Adv. Phys. 38, 367–468 (1989),
https://doi.org/10.1080/00018738900101122
[13] V. Palenskis, Flicker noise problem (review), Lith. Phys. J. 30, 107–152 (1990)
[14] B.K. Jones, Electrical noise as a measure of quality and reliability in electronic devices, in: Advances in Electronics and Electron Physics, Vol. 87 (Elsevier, 1993) pp. 201–257,
https://doi.org/10.1016/s0065-2539(08)60017-7
[15] F.N. Hooge, 1/f noise sources, IEEE Trans. Electron Dev. 41, 1926–1935 (1994),
https://doi.org/10.1109/16.333808
[16] M.S. Kogan, Electronic Noise and Fluctuations in Solids (Cambridge University Press, New York, 1996),
https://doi.org/10.1017/CBO9780511551666
[17] B. Pelegrini, A general model of 1/fγ noise, Microelectron. Reliab. 40, 1775–1780 (2000),
https://doi.org/10.1016/S0026-2714(00)00061-5
[18] M. Nardone, V. Kozub, I.V. Karpov, and V.G. Karpov, Possible mechanisms for 1/f noise in chalcogenide glasses: A theoretical description, Phys Rev. B 79(16), 165206 (2009),
https://doi.org/10.1103/PhysRevB.79.165206
[19] M.J. Uren, D.J. Day, and M.J. Kirton, 1/f and random telegraph noise in silicon metal-oxide-semiconductor field-effect transistors, Appl. Phys. Lett. 47, 1195–1197 (1985),
https://doi.org/10.1063/1.96325
[20] L.K.J. Vandamme and F.H. Hooge, What do we certainly know about 1/f noise in MOSTs? IEEE Trans. El. Dev. 55, 3070–3085 (2008),
https://doi.org/10.1109/TED.2008.2005167
[21] F.H. Hooge and L.K.J. Vandamme, Lattice scattering causes 1/f noise, Phys. Lett. A 66, 315–316 (1978),
https://doi.org/10.1016/0375-9601(78)90249-9
[22] F.H. Hooge, in: Proceedings of the 7th Vilnius Conference on Fluctuation Phenomena in Physical Systems, ed. V. Palenskis (VU Press, Vilnius, 1994) pp. 61–69
[23] F.H. Hooge, in: Noise in Physical Systems and 1/f Fluctuations, Proceedings of the 13th International Conference, eds. V. Bareikis and R. Katilius (World Scientific, Singapore, 1995) pp. 8–13,
https://doi.org/10.1142/2764
[24] T.G.M. Kleinpenning, 1/f noise in Hall effect: Fluctuations in mobility, J. Appl. Phys. 51, 3438 (1980),
https://doi.org/10.1063/1.328029
[25] R.P. Jindal and A. Van der Ziel, Phonon fluctuation model for flicker noise in elemental semiconductors, J. Appl. Phys. 52, 2884–2888 (1981),
https://doi.org/10.1063/1.329022
[26] S.V. Melkonyan, V.M. Aroutiounian, F.V. Gasparyan, and H.V. Asriyan, Phonon mechanism of mobility equilibrium fluctuations and properties of 1/f noise, Phys. Rev. B 382, 65–70 (2006),
https://doi.org/10.1016/j.physb.2006.01.521
[27] B.C. Daly, K. Kang, Y. Wang, and D.G. Cahill, Picosecond ultrasonic measurements of attenuation of longitudinal acoustic phonons in silicon, Phys. Rev. B 80, 1744112 (2009),
https://doi.org/10.1103/PhysRevB.80.174112
[28] J. Cuffe, O. Ristow, E. Chávez, A. Shchepetov, P.-O. Chapuis, F. Alzina, M. Hettich, M. Prunnila, J. Ahopelto, T. Dekorsy, and C.M. Sotomayor Torres, Lifetimes of confined acoustic phonons in ultrathin silicon membranes, Phys. Rev. Lett. 110, 095503 (2013),
https://doi.org/10.1103/PhysRevLett.110.095503
[29] T.G.M. Kleinpenning, Theory of noise investigations on conductors with four-probe method, J. Appl. Phys. 48, 2946–2949 (1977),
https://doi.org/10.1063/1.324107
[30] Z. Šoblickas and V. Palenskis, Noise spectroscopy of impurity levels and 1/f noise in high resistance silicon, Liet. fiz. rink. 25, 88–97 (1985) [Litovskii fizicheskii sbornik, in Russian]
[31] V. Palenskis, K. Maknys, A. Stadalnikas, Z. Šoblickas, and A. Utorovičius, in: Proceedings of the 7th Vilnius Conference on Fluctuation Phenomena in Physical Systems, ed. V. Palenskis (VU Press, Vilnius, 1994) pp. 266–273,
[32] S. Machlup, Noise in semiconductor: spectrum of two parameter random signal, J. Appl. Phys. 25, 341–343 (1954),
https://doi.org/10.1063/1.1721637
[33] C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, A review of some charge transport properties of silicon, Solid State Electron. 20, 77–89 (1977),
https://doi.org/10.1016/0038-1101(77)90054-5
[34] V. Palenskis, Transport of electrons in donor-doped silicon at any degree of degeneracy of electron gas, World J. Condens. Matt. Phys. 4, 123–133 (2014),
https://doi.org/10.4236/wjcmp.2014.43017
[35] V. Palenskis and K. Maknys, Nature of low-frequency noise in homogeneous semiconductors, Sci. Rept. 5, 18305 (2015),
https://doi.org/10.1038/srep18305
[36] A. Dargys and J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs and InP (Science and Encyclopedia Publishers, Vilnius, 1994),
[37] J. Pavelka, J. Šikula, M. Chvatal, and M. Tacano, in: Proceedings of the 2015 International Conference on Noise and Fluctuations ICNF 2015 (IEEE, 2015) pp. 349–352,
[PDF]
[38] H.F. Mataré, Defect Electronics in Semiconductors (John Wiley and Sons, Inc., New York, 1971),
https://www.amazon.co.uk/d/Books/Defect-Electronics-Semiconductors-Herbert-F-Matare/0471576182/
[39] K.V. Ravi, Imperfections and Impurities in Semiconductor Silicon (John Wiley and Sons, Inc., New York, 1981),
https://www.amazon.co.uk/Imperfections-Impurities-Semiconductor-Silicon-RAVI/dp/0471078174/
[40] R.H. Galenzer and A.G. Jordan, The electrical properties of dislocations in silicon – I: The effects on carrier lifetime, Solid State Electron. 12, 247–258 (1969),
https://doi.org/10.1016/0038-1101(69)90006-9