[PDF]    https://doi.org/10.3952/physics.v57i1.3452

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 57, 19–28 (2017)


OPTICAL PARAMETRIC AMPLIFICATION BY INCOHERENT CONICAL PUMP BEAM
Viktorija Tamulienė, Valerijus Smilgevičius, Domas Kudarauskas, Rytis Butkus, Algirdas Stabinis, and Algis Piskarskas
Department of Quantum Electronics, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: viktorija.tamuliene@ff.vu.lt

Received 9 September 2016; revised 19 October 2016; accepted 21 December 2016

Optical parametric amplification of an input narrowband signal beam in the field of a spatially incoherent conical pump is investigated. Two amplification regimes – onset and exponential – are distinguished. The possibility to amplify the signal beam significantly and obtain a smooth intensity profile at the output is revealed. It is shown that the incoherent conical beam may act on the signal beam as a plane wave. Good agreement of theoretical and experimental data is obtained.
Keywords: optical parametric amplification, conical beams, incoherence
PACS: 42.65.-k, 42.65.Yj, 42.25.Kb

ŠVIESOS PARAMETRINIS STIPRINIMAS KAUPINANT NEKOHERENTINIU KŪGINIU PLUOŠTU

Viktorija Tamulienė, Valerijus Smilgevičius, Domas Kudarauskas, Rytis Butkus, Algirdas Stabinis, Algis Piskarskas
Vilniaus universiteto Kvantinės elektronikos katedra, Vilnius, Lietuva

Pademonstruotas erdviškai koherentinio šviesos pluošto parametrinis stiprinimas kaupinant jį erdviškai nekoherentiniu kūginiu pluoštu. Nustatytos sąlygos, kada stiprinamo pluošto kampinis spektras lieka nepakitęs. Tada stiprinimas vyksta pagal eksponentinį dėsnį ir kaupinimo pluoštas veikia kaip plokščia banga.
Gautas geras teorinių ir eksperimentinių rezultatų sutapimas.

References / Nuorodos

[1] A. Piskarskas, V. Pyragaite, and A. Stabinis, Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light, Phys. Rev. A 82(5), 053817 (2010),
https://doi.org/10.1103/PhysRevA.82.053817
[2] A. Picozzi and M. Haelterman, Parametric three-wave soliton generated from incoherent light, Phys. Rev. Lett. 86(10), 2010–2013 (2001),
https://doi.org/10.1103/PhysRevLett.86.2010
[3] V. Pyragaite, A. Stabinis, A. Piskarskas, and V. Smilgevičius, Parametric amplification in the field of incoherent light, Phys. Rev. A 87(6), 063809 (2013),
https://doi.org/10.1103/PhysRevA.87.063809
[4] V. Pyragaite, V. Smilgevičius, R. Butkus, A. Stabinis, and A. Piskarskas, Conversion of broadband incoherent pump to narrowband signal in an optical parametric amplifier, Phys. Rev. A 88(2), 023820 (2013),
https://doi.org/10.1103/PhysRevA.88.023820
[5] C. Sun, S. Jia, C. Barsi, S. Rica, A. Picozzi, and J.W. Fleischer, Observation of the kinetic condensation of classical waves, Nat. Phys. 8, 470–474 (2012),
https://doi.org/10.1038/nphys2278
[6] J. Durnin, Exact solutions for nondiffracting beams. I. The scalar theory, J. Opt. Soc. Am. A 4(4), 651–654 (1987),
https://doi.org/10.1364/JOSAA.4.000651
[7] D. McGloin and K. Dholakia, Bessel beams: Diffraction in a new light, Contemp. Phys. 46(1), 15–28 (2005),
https://doi.org/10.1080/0010751042000275259
[8] P. Stanislovaitis, A. Narmontas, V. Pyragaite, and V. Smilgevičius, Generation of a coherent second-harmonic beam from incoherent conical beams, Phys. Rev. A 89(4), 043821 (2014),
https://doi.org/10.1103/PhysRevA.89.043821
[9] R. Gadonas, A. Marcinkevičius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, Travelling wave optical parametric generator pumped by a conical beam, Opt. Commun. 146(1–6), 253–256 (1998),
https://doi.org/10.1016/S0030-4018(97)00559-2
[10] V. Pyragaite, V. Smilgevičius, R. Butkus, A. Narmontas, A. Stabinis, and A. Piskarskas, Controlling the signal angular profile in a Bessel-beam-pumped optical parametric amplifier, Phys. Rev. A 90(2), 023807 (2014),
https://doi.org/10.1103/PhysRevA.90.023807
[11] A.V. Smith, Computer Code SNLO (AS-Photonics, Albuquerque, NM, 2012)
[12] R. Loudon, The Quantum Theory of Light (Oxford University Press, New York, 2000),
https://global.oup.com/academic/product/the-quantum-theory-of-light-9780198501763
[13] G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, CA, 1989)
[14] A. Picozzi and P. Aschieri, Influence of dispersion on the resonant interaction between three incoherent waves, Phys. Rev. E 72(4), 046606 (2005),
https://doi.org/10.1103/PhysRevE.72.046606
[15] A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D.N. Christodoulides, Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics, Phys. Rep. 542(1), 1–132 (2014),
https://doi.org/10.1016/j.physrep.2014.03.002