[PDF]    https://doi.org/10.3952/physics.v57i3.3542

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 57, 158–182 (2017)


RADIATIVE TRANSITIONS FOR THREE LOWEST CONFIGURATIONS OF TUNGSTEN IONS W38+–W43+
Rasa Karpuškienė, |Pavel Bogdanovich|, and Romualdas Kisielius
Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio 3, LT-10257 Vilnius, Lithuania
E-mail: rasa.karpuskiene@tfai.vu.lt

Received 4 April 2017; revised 18 May 2017; accepted 15 June 2017

The ab initio quasirelativistic approximation was used to derive transition data for the multicharged tungsten ions W38+–W43+ with an open 4p shell. The configuration interaction method with transformed radial orbitals was applied to include electron correlation effects. The relativistic effects were taken into account in the Breit–Pauli approximation for the quasirelativistic Hartree–Fock radial orbitals. The level energies E, radiative lifetimes τ, and Landé g-factors were calculated for the 4s24pN, 4s24pN–14d, and 4s4pN+1 configurations of six tungsten ions. The radiative transition wavelengths λ, spontaneous emission transition probabilities A and their uncertainties for the electric dipole, electric quadrupole, electric octupole, magnetic dipole and magnetic quadrupole transitions among the levels of these configurations are presented.
Keywords: tungsten, level energies, radiative rates, Landé g-factors, lifetimes
PACS: 31.10.+Z, 31.15.ag, 32.70.Cs

NAUJOS HARMONINIO OSCILIATORIAUS BAZĖS TAIKYMO GALIMYBĖS, SKAIČIUOJANT KULONINĖS TRIJŲ NETAPATINGŲ DALELIŲ SISTEMOS PAGRINDINĖS BŪSENOS ENERGIJĄ

Rasa Karpuškienė, |Pavelas Bogdanovičius|, Romualdas Kisielius
Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Kvazireliatyvistinis Hartrio ir Foko artinys panaudotas tiriant radiacinių šuolių savybes volframo jonuose W38+–W43+ su atviru 4p sluoksniu. Konfigūracijų sąveikos artėjimas pritaikytas koreliaciniams efektams įskaityti naudojant transformuotųjų radialiųjų orbitalių bazę. Darbe pateikiamos konfigūracijų 4s24pN, 4s24pN-14d ir 4s4pN+1 lygmenų energijos, jų radiacinės gyvavimo trukmės τ, Landé g-daugikliai bei įvairių tipų (E1, E2, E3, M1 ir M2) savaiminių šuolių bangų ilgiai ir emisijos šuolių tikimybės. Gautos šuolių charakteristikos palygintos su eksperimentiniais ir kitų autorių teoriniais duomenimis. Kartu pateikiami teorinių bangų ilgių neapibrėžtumai ir iš jų kylantys šuolių tikimybių neapibrėžtumai.

References / Nuorodos

[1] J. Reader, Spectral data for fusion energy: from W to W, Phys. Scr. T134, 014023 (2009),
https://doi.org/10.1088/0031-8949/2009/T134/014023
[2] C. Skinner, Atomic physics in the quest for fusion energy and ITER, Phys. Scr. T134, 014022 (2009),
https://doi.org/10.1088/0031-8949/2009/T134/014022
[3] P. Beiersdorfer, J. Clementson, and U.I. Safronova, Tungsten data for current and future uses in fusion and plasma science, Atoms 3, 260–272 (2015),
https://doi.org/10.3390/atoms3020260
[4] Z. Wu, Y. Fu, X. Ma, M. Li, L. Xie, J. Jiang, and C. Dong, Electron impact excitation and dielectronic recombination of highly charged tungsten ions, Atoms 3, 474–494 (2015),
https://doi.org/10.3390/atoms3040474
[5] P. Bogdanovich and R. Kisielius, Theoretical energy level spectra and transition data for 4p64d, 4p64f and 4p54d2 configurations of W37+ ion, At. Data Nucl. Data Tables 98, 557–565 (2012),
https://doi.org/10.1016/j.adt.2011.11.004
[6] P. Bogdanovich and R. Kisielius, Theoretical energy level spectra and transition data for 4p64d2, 4p64d4f, and 4p54d3 configurations of W36+, At. Data Nucl. Data Tables 99, 580–594 (2013),
https://doi.org/10.1016/j.adt.2012.11.001
[7] P. Bogdanovich, R. Karpuškienė, and R. Kisielius, Quasirelativistic calculation of 4s24p5, 4s24p44d and 4s4p6 configuration spectroscopic parameters for the W39+ ion, Phys. Scr. 90, 035401 (2015),
https://doi.org/10.1088/0031-8949/90/3/035401
[8] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database, Version 5.3 (National Institute of Standards and Technology, Gaithersburg, MD, USA, 2015),
https://physics.nist.gov/asd
[9] S.B. Utter, P. Beiersdorfer, and E. Träbert, Electron-beam ion-trap spectra of tungsten in the EUV, Can. J. Phys. 80, 1503–1515 (2002),
https://doi.org/10.1139/p02-132
[10] R. Radtke, C. Biedermann, G. Fussmann, J.L. Schwob, P. Mandelbaum, and R. Doron, Measured line spectra and calculated atomic physics data for highly charged tungsten ions, in: Atomic and Plasma-Material Interaction Data for Fusion, Vol. 13, ed. R.E.H. Clark (International Atomic Energy Agency, Vienna, 2007) pp. 45–66,
http://www-pub.iaea.org/books/IAEABooks/7774/Atomic-and-Plasma-Material-Interaction-Data-for-Fusion
[11] K.M. Aggarwal and F.P. Keenan, Energy levels, radiative rates, and lifetimes for transitions in W XL, At. Data Nucl. Data Tables 100, 1399–1518 (2014),
https://doi.org/10.1016/j.adt.2014.02.006
[12] C. Froese Fischer, Evaluation and comparison of the configuration interaction calculations for complex atoms, Atoms 2, 1–14 (2014),
https://doi.org/10.3390/atoms2010001
[13] P. Bogdanovich, R. Karpuškienė, and R. Kisielius, Energy spectra of the tungsten ion 4s24pN, 4s24pN–14d and 4s4pN+1 configurations, Lith. J. Phys. 55, 162 (2015),
https://doi.org/10.3952/physics.v55i3.3145
[14] K.B. Fournier, Atomic data and spectral line intensities for highly ionized tungsten (Co-like W47+ to Rb-like W37+) in a high-temperature, low-density plasma, At. Data Nucl. Data Tables 68, 1–48 (1998),
https://doi.org/10.1006/adnd.1997.0756
[15] P. Quinet, A theoretical survey of atomic structure and forbidden transitions in the 4pk and 4dk ground configurations of tungsten ions W29+ through W43+, J. Phys. B 45, 025003 (2012),
https://doi.org/10.1088/0953-4075/45/2/025003
[16] P. Quinet, É. Biémont, P. Palmeri, and E. Träbert, Multiconfiguration Dirac–Fock wavelengths and transition rates in the X-ray spectra of highly charged Ga-like ions from Yb39+ to U61+, At. Data Nucl. Data Tables 93, 167–182 (2007),
https://doi.org/10.1016/j.adt.2006.09.001
[17] F. Hu, C. Wang, J. Yang, G. Jiang, and L. Hao, Multiconfiguration Dirac–Fock calculations of transition probabilities of some tungsten ions, Phys. Scr. 84, 015302 (2011),
https://doi.org/10.1088/0031-8949/84/01/015302
[18] L.-H. Hao and X.-P. Kang, Energy levels and spectral lines in the X-ray spectra of highly charged W XLIV, Eur. Phys. J. D 68, 203 (2014),
https://doi.org/10.1140/epjd/e2014-50056-0
[19] J. Clementson, P. Beiersdorfer, T. Brage, and M.F. Gu, Atomic data and theoretical X-ray spectra of Ge-like through V-like W ions, At. Data Nucl. Data Tables 100, 577–649 (2014),
https://doi.org/10.1016/j.adt.2013.07.002
[20] G. Gaigalas, P. Rynkun, and C. Froese Fischer, Lifetimes of 4p54d levels in highly ionized atoms, Phys. Rev. A 91, 022509 (2015),
https://doi.org/10.1103/PhysRevA.91.022509
[21] A. Kramida, Critical evaluation of data on atomic energy levels, wavelengths, and transition probabilities, Fusion Sci. Technol. 63, 313323 (2013),
https://doi.org/10.13182/FST13-A16437
[22] A. Kramida, Assessing uncertainties of theoretical atomic transition probabilities with Monte Carlo random trials, Atoms 2, 86–122 (2014),
https://doi.org/10.3390/atoms2020086
[23] P. Bogdanovich and O. Rancova, Quasirelativistic approach for ab initio study of highly charged ions, Phys. Scr. 78, 045301 (2008),
https://doi.org/10.1088/0031-8949/78/04/045301
[24] P. Bogdanovich and O. Rancova, Quasirelativistic Hartree–Fock equations consistent with Breit–Pauli approach, Phys. Rev. A 74(5), 052501 (2006),
https://doi.org/10.1103/PhysRevA.74.052501
[25] P. Bogdanovich and O. Rancova, Adjustment of the quasirelativistic equations for p electrons, Phys. Rev. A 76, 012507 (2007),
https://doi.org/10.1103/PhysRevA.76.012507
[26] P. Bogdanovich and R. Karpuškienė, Numerical methods of the preliminary evaluation of the role of admixed configurations in atomic calculations, Comp. Phys. Comm. 134, 321–334 (2001),
https://doi.org/10.1016/S0010-4655(00)00214-9
[27] P. Bogdanovich, R. Karpuškienė, and A. Momkauskaitė, Some problems of calculation of energy spectra of complex atomic configurations, Comput. Phys. Commun. 143, 174–180 (2002),
https://doi.org/10.1016/S0010-4655(01)00446-5
[28] A. Hibbert, R. Glass, and C. Froese Fischer, A general program for computing angular integrals of the Breit–Pauli Hamiltonian, Comput. Phys. Commun. 64, 445–472 (1991),
https://doi.org/10.1016/0010-4655(91)90138-B
[29] C. Froese Fischer, M.R. Godefroid, and A. Hibbert, A program for performing angular integrations for transition operators, Comput. Phys. Commun. 64, 486–500 (1991),
https://doi.org/10.1016/0010-4655(91)90140-G
[30] C. Froese Fischer and M.R. Godefroid, Programs for computing LS and LSJ transitions from MCHF wave functions, Comput. Phys. Commun. 64, 501–519 (1991),
https://doi.org/10.1016/0010-4655(91)90141-7
[31] R. Karpuškienė, P. Bogdanovich, and R. Kisielius, Significance of M2 and E3 transitions for 4p54dN+1- and 4p64dN–14f-configuration metastable-level lifetimes, Phys. Rev. A 88, 022519 (2013),
https://doi.org/10.1103/PhysRevA.88.022519
[32] A. Bar-Shalom, M. Klapisch, and J. Oreg, Electron collision excitations in complex spectra of ionized heavy atoms, Phys. Rev. A 38, 1773–1784 (1988),
https://doi.org//10.1103/PhysRevA.38.1773