[PDF]    https://doi.org/10.3952/physics.v57i4.3599

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 57, 207–217 (2017)


HETERO CuOx /ZnO MICRO-/NANOSTRUCTURE: CARBOTHERMAL REDUCTION–VAPOUR PHASE TRANSPORT
Ali Rahmatia,b, F. Rahimi Bayaza,b, A. Lotfianic, and M. Kouhestanid
aDepartment of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
bNanostructure Laboratory, Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
cLaser and Plasma Research Institute, Shahid Beheshti University, P.O. Box 198396-3113, Evin, Tehran, Iran
dPhysics Department, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
alirahmati1980@gmail.com

Received 10 April 2017; revised 19 May 2017; accepted 15 June 2017

ZnO micro-/nanostructures were synthesized by the carbothermal reduction–chemical vapour transport method. This work is focused on the effect of the substrate temperature and Cu catalyst layer on the shape and geometry of ZnO micro-/nanostructures. The thermally oxidized Cu template affects the structure, chemical identity, optical and photoluminescence properties of the ZnO micro-/nanostructure and results in a CuOx/ZnO heterostructure. SEM studies give a direct evidence of the role of deposition temperature and Cu catalyst in the formation of a stable hemisphere based wire, a comb-like cantilever, a javelin-like tetrapod, a spherical and polyhedral cage of ZnO. XRD and Raman measurements confirm a hexagonal wurtzite structure of the ZnO micro-/nanostructure. The absorption edge of the ZnO/CuOx heterostructure is redshifted in comparison to the pure ZnO structure. PL studies indicate that the UV emission can be suppressed significantly while the green emission is enhanced due to the change in the morphology of ZnO micro-/nanostructures.
Keywords: vapour phase transport growth, CuOx/ZnO heterostructure, carbothermal reduction
PACS: 68.35.–p, 73.40.Kp, 81.16.–c

ĮVAIRIALYTIS CuOx/ZnO MIKRO- ARBA NANODARINYS: KARBOTERMINĖ REDUKCIJA SU GARŲ FAZĖS PERNAŠA
Ali Rahmatia,b, F. Rahimi Bayaza,b, A. Lotfianic, M. Kouhestanid

aRafsandžano Vali-e-Asr universiteto Mokslo fakulteto Fizikos katedra, Rafsandžanas, Iranas
bRafsandžano Vali-e-Asr universiteto Mokslo fakulteto Nanostruktūrų laboratorija, Rafsandžanas, Iranas
cŠahid Behešti universitetas, Evinas, Teheranas, Iranas
dPajam Nur universitetas, Teheranas, Iranas


References / Nuorodos

[1] Z. Zhang, S.J. Wang, T. Yu, and T. Wu, Controlling the growth mechanism of ZnO nanowires by selecting catalysts, J. Phys. Chem. C 111, 17500–17505 (2007),
https://doi.org/10.1021/jp075296a
[2] M. Laurenti, S. Stassi, M. Lorenzoni, M. Fontana, G. Canavese, V. Cauda, and C.F. Pirri, Evaluation of the piezoelectric properties and voltage generation of flexible zinc oxide thin films, Nanotechnology 26, 215704 (2015),
https://doi.org/10.1088/0957-4484/26/21/215704
[3] M. Laurenti, G. Canavese, A. Sacco, M. Fontana, K. Bejtka, M. Castellino, C.F. Pirri, and V. Cauda, Nanobranched ZnO structure: p‐type doping induces piezoelectric voltage generation and ferroelectric-photovoltaic effect, Adv. Mater. 27, 4218–4223 (2015),
https://doi.org/10.1002/adma.201501594
[4] A. Rahmati and S. Zakeri Afshar, Heteroepitaxial ZnO/CuO thin film and nanorods array: photoconductivity and field emission effect, J. Mater. Sci. Mater Electron. 28, 13032 (2017),
https://doi.org/10.1007/s10854-017-7135-8
[5] A. Rahmati and M. Yousefi, Well oriented ZnO nanorods arrray: negative resistance and optical switching, Z. Anorg. Allg. Chem. 643, 870–876 (2017),
https://doi.org/10.1002/zaac.201700105
[6] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98, 041301 (2005),
https://doi.org/10.1063/1.1992666
[7] H. Morkoç and Ü. Özgür, in: Zinc Oxide, Fundamentals, Materials and Device Technology (Wiley VCH, 2009),
https://www.wiley.com/en-us/Zinc+Oxide%3A+Fundamentals%2C+Materials+and+Device+Technology-p-9783527408139
[8] U. Manzoor and D.K. Kim, Size control of ZnO nanostructures formed in different temperature zones by varying Ar flow rate with tunable optical properties, Physica E 41, 500–505 (2009),
https://doi.org/10.1016/j.physe.2008.09.012
[9] W.I. Park, D.H. Kim, S.W. Jung, and G.C. Yi, Metalorganic vapour-phase epitaxial growth of vertically well-aligned ZnO nanorods, Appl. Phys. Lett. 80, 4232 (2002),
https://doi.org/10.1063/1.1482800
[10] A.B. Hartanto, X. Ning, Y. Nakata, and T. Okada, Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume, Appl. Phys. A 78, 299 (2004),
https://doi.org/10.1007/s00339-003-2286-2
[11] L. Vayssieres, K. Keis, S.E. Lindquist, and A.J. Hagfeldt, Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO, Phys. Chem. B 105, 3350 (2001),
https://doi.org/10.1021/jp010026s
[12] C.R. Gobbiner, A.V. Muhammed Ali, and D. Kekuda, CuO/ZnO planar bilayer heterojunction grown by reactive dc magnetron sputtering, J. Mater. Sci. Mater. Electron. 26, 9801–9807 (2015),
https://doi.org/10.1007/s10854-015-3652-5
[13] Y.W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D.P. Norton, F. Ren, and P.H. Fleming, Site-specific growth of ZnO nanorods using catalysis driven molecular-beam epitaxy, Appl. Phys. Lett. 81(16), 3046–3048 (2002),
https://doi.org/10.1063/1.1512829
[14] M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Catalytic growth of zinc oxide nanowires by vapour transport, Adv. Mater. 13(2), 113–116 (2001),
https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
[15] D.L. Guo, X. Huang, G.Z. Xing, Z. Zhang, G.P. Li, M. He, H. Zhang, H.Y. Chen, and T. Wu, Metal-layer-assisted coalescence of Au nanoparticles and its effect on diameter control in vapour-liquid-solid growth of oxide nanowires, Phys. Rev. B 83, 045403 (2011),
https://doi.org/10.1103/PhysRevB.83.045403
[16] G.W. She, X. Huang, L.L. Jin, X.P. Qi, L. Mu, and W.S. Shi, Electrochemical sensors: SnO2 nanoparticle-coated ZnO nanotube arrays for high-performance electrochemical sensors, Small 10(22), 4685–4692 (2014),
https://doi.org/10.1002/smll.201401471
[17] F.M. Li, G.W. Hsieh, S. Dalal, M.C. Newton, J.E. Stott, P. Hiralal, A. Nathan, P.A. Warburton, H.E. Unalan, P. Beecher, A.J. Flewitt, I. Robinson, G. Amaratunga, and W.I. Milne, Zinc oxide nanostructures and high electron mobility nanocomposite thin film transistors, IEEE Trans. Electron Dev. 55(11), 3001 (2008),
https://doi.org/10.1109/TED.2008.2005180
[18] B.D. Yao, Y.F. Chan, and N. Wang, Formation of ZnO nanostructures by a simple way of thermal evaporation, Appl. Phys. Lett. 81, 757 (2002),
https://doi.org/10.1063/1.1495878
[19] Z.L. Wang, X.Y. Kong, and J.M. Zuo, Induced growth of asymmetric nanocantilever arrays on polar surfaces, Phys. Rev. Lett. 91, 185501 (2003),
https://doi.org/10.1103/PhysRevLett.91.185502
[20] G. Modi, Zinc oxide tetrapod: a morphology with multifunctional applications, Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 033002 (2015),
https://doi.org/10.1088/2043-6262/6/3/033002
[21] Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications, J. Phys. Condens. Matter 16, R829–858 (2004),
https://doi.org/10.1088/0953-8984/16/25/R01
[22] D. Moore, C. Ronning, C. Ma, and Z.L. Wang, Wurtzite ZnS nanosaws produced by polar surfaces, Chem. Phys. Lett. 385, 8 (2004),
https://doi.org/10.1016/j.cplett.2003.12.063
[23] C. Ma, Y. Ding, D. Moore, X.D. Wang, and Z.L. Wang, Single-crystal CdSe nanosaws, J. Am. Chem. Soc. 126, 708 (2004),
https://doi.org/10.1021/ja0395644
[24] R. Yousefi, F. Jamali-Sheini, A. Khorsand Zak, and M.R. Mahmoudian, Effect of indium concentration on morphology and optical properties of In-doped ZnO nanostructures, Ceram. Int. 38, 6295–6301 (2012),
https://doi.org/10.1016/j.ceramint.2012.04.085
[25] B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978),
[PDF]
[26] S.W. Lee, Y.S. Lee, J.Y. Heo, S.C. Siah, D. Chua, R.E. Brandt, S.B. Kim, J.P. Mailoa, T. Buonassisi, and R.G. Gordon, Improved Cu2O-based solar cells using atomic layer deposition to control the Cu oxidation state at the p-n junction, Adv. Energy Mater. 4(11), 1301916 (2014),
https://doi.org/10.1002/aenm.201301916
[27] G. Srinivasan, R.T.R. Kumar, and J. Kumar, Li doped and undoped ZnO nanocrystalline thin films: a comparative study of structural and optical properties, J. Solgel Sci. Technol. 43, 171–177 (2007),
https://doi.org/10.1007/s10971-007-1574-2
[28] O. Lupan, T. Pauporte, L. Chow, B. Viana, F. Pelle, L.K. Ono, B.R. Cuenya, and H. Heinrich, Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium, Appl. Surf. Sci. 256, 1895–1907 (2010),
https://doi.org/10.1016/j.apsusc.2009.10.032
[29] O. Lupan, L. Chow, L.K. Ono, B. Roldan Cuenya, G. Chai, H. Khallaf, S. Park, and A. Schulte, Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route, J. Phys. Chem. C 114, 12401–12408 (2010),
https://doi.org/10.1021/jp910263n
[30] P.K. Sharma, R.K. Dutta, and A.C. Pandey, Doping dependent room-temperature ferromagnetism and structural properties of dilute magnetic semiconductor ZnO:Cu2+ nanorods, J. Magn. Magn. Mater. 321, 4001–4005 (2009),
https://doi.org/10.1016/j.jmmm.2009.07.066
[31] K. Samanta, P. Bhattacharya, R.S. Katiyar, W. Iwamoto, P.G. Pagliuso, and C. Rettori, Raman scattering studies in dilute magnetic semiconductor Zn1–xCoxO, Phys. Rev. B 73, 245213 (2006),
https://doi.org/10.1103/PhysRevB.73.245213
[32] R. Cusco, E. Alarcon-Llado, J. Ibanez, L. Artus, J. Jimenez, B. Wang, and M. Callahan, Temperature dependence of Raman scattering in ZnO, Phys. Rev. B 75, 165202 (2007),
https://doi.org/10.1103/PhysRevB.75.165202
[33] X.F. Wang, J.B. Xu, X.J. Yu, K. Xue, and X. Zhao, Structural evidence of secondary phase segregation from the Raman vibrational modes in Zn1–xCoxO (0<x<0.6), Appl. Phys. Lett. 91, 031908 (2007),
https://doi.org/10.1063/1.2759272
[34] M. Karaliunas, T. Serevicius, E. Kuokstis, S. Jursenas, S.Y. Ting, J.J. Huang, and C.C. Yang, Optical characterization of MBE-grown ZnO epilayers, Adv. Mat. Res. 222, 86–89 (2011),
https://doi.org/10.4028/www.scientific.net/AMR.222.86
[35] D.D. Wang, G.Z. Xing, J.H. Yang, L.L. Yang, M. Gao, J. Cao, Y.J. Zhang, and B. Yao, Dependence of energy transfer and photoluminescence on tailored defects in Eu-doped ZnO nanosheets-based microflowers, J. Alloy. Comp. 504, 22–26 (2010),
https://doi.org/10.1016/j.jallcom.2010.05.105
[36] G.Z. Xing, G.C. Xing, M.J. Li, E.J. Sie, D. Wang, A. Sulistio, Q.L. Ye, C. Hon, A. Huan, T. Wu, and T.C. Sum, Charge transfer dynamics in Cu-doped ZnO nanowires, Appl. Phys. Lett. 98, 102105 (2011),
https://doi.org/10.1063/1.3558912