[PDF]    https://doi.org/10.3952/physics.v58i1.3654

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 90–98 (2018)


CHARACTERIZATION OF ULTRAFAST InGaAs PHOTOCONDUCTORS AND THEIR APPLICATION TO SIGNAL PROCESSING IN RADIO-OVER-FIBRE TELECOMMUNICATIONS
Robert Horvath, Jean-François Roux, Jean-Louis Coutaz, and Julien Poëtte
Université Grenoble Alpes, Université Savoie Mont-Blanc, Grenoble INP, CNRS, IMEP-LAHC, 38000 Grenoble, France
E-mail: jean-francois.roux@univ-smb.fr

Received 1 February 2018; accepted 22 March 2018

Characterization of nitrogen ion implanted InGaAs photoconductive devices is performed in both the electronic and optoelectronic regime. In the dark state, the optoelectronic device shows a dark resistance of a few kΩ and a wide electrical bandwidth in the RF domain. This large bandwidth is also confirmed in the illuminated state, optoelectronic autocorrelation experiments performed with ultra-short optical pulses allow us to measure the picosecond optoelectronic time response of the device. In the second part of the work, we investigate the potentiality of this component to be used in the photonic assisted heterodyne detection of RF modulated carriers for radio-over-fibre telecommunications. We demonstrate that this photoconductor, thanks to its properties, can be used to demodulate complex data modulation formats in such an experiment.
Keywords: III–V material, high speed electronics, ion implanted InGaAs, metal–semiconductor–metal devices, optoelectronic autocorrelation, radio-over-fibre telecommunications, ultrafast photoconductor
PACS: 85.60.Bt, 85.60.Gz, 84.40.Ua

ULTRASPARČIŲJŲ InGaAs FOTOLAIDININKŲ CHARAKTERIZAVIMAS IR JŲ TAIKYMAS RADIJO ŠVIESOLAIDINĖS TELEKOMUNIKACIJOS SIGNALŲ APDOROJIMUI
Robert Horvath, Jean-François Roux, Jean-Louis Coutaz, Julien Poëtte

Grenoblio universitetas, Grenoblis, Prancūzija


References / Nuorodos

[1] D.H. Auston, K.P. Cheung, and P.R. Smith, Picosecond photoconductive Hertzian dipoles, Appl. Phys. Lett. 45, 284–286 (1984),
https://doi.org/10.1063/1.95174
[2] D.H. Auston, in: Picosecond Optoelectronic Devices, ed. C. H. Lee (Academic-Press, New York, 1983),
https://www.elsevier.com/books/picosecond-optoelectronic-devices/lee/978-0-12-440880-7
[3] D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors, J. Opt. Soc. Am. B 7, 2006–2015 (1990),
https://doi.org/10.1364/JOSAB.7.002006
[4] M.Y. Frankel, J.F. Whitaker, G.A. Mourou, F.W. Smith, and A.R. Calawa, High-voltage picosecond photoconductor switch based on low-temperature-grown GaAs, IEEE Trans. Electron Devices 37, 2493–2498 (1990),
https://doi.org/10.1109/16.64523
[5] L.Y. Nathawad, R. Urata, B. Wooley, and D.A.B. Miller, A 40-GHz-bandwidth, 4 bit, time-interleaved A/D converter using photoconductive sampling, IEEE J. Solid-State Circuits 38, 2021–2030 (2003),
https://doi.org/10.1109/JSSC.2003.819172
[6] M.B. Kuppam, J.-F. Lampin, E. Peytavit, J.-F. Roux, and J.-L. Coutaz, Study of ultrafast semiconductor photoswitches for CW RF signal sampling and modulation, IEEE J. Lightwave Technol. 32, 3839–3845 (2014),
https://doi.org/10.1109/JLT.2014.2334063
[7] S. Chou, Y. Liu, W. Khalil, H. Wan, T. Hsiang, and S. Alexandrou, Ultrafast nanoscale MSM photodetectors on bulk and low-temperature grown GaAs, Appl. Phys. Lett. 61, 819–821 (1992),
https://doi.org/10.1063/1.107755
[8] A. Krotkus and J.-L. Coutaz, Non-stoichiometric semiconductor materials for terahertz optoelectronics applications, Semicond. Sci. Technol. 20, S142–S150 (2009),
https://doi.org/10.1088/0268-1242/20/7/004
[9] A. Krotkus, K. Bertulis, M. Kaminska, K. Korona, A. Wolos, J. Siegert, S. Marcinkevicius, J.-F. Roux, and J.-L. Coutaz, Be-doped low-temperature-grown GaAs material for optoelectronic switches, IEE Proc. Optoelectron. 149, 111–115 (2002),
https://doi.org/10.1049/ip-opt:20020435
[10] A. Krotkus, S. Marcinkevicius, J. Jasinski, M. Kaminska, H.H. Tan, and C. Jagadish, Picosecond carrier lifetime in GaAs implanted with high doses of As ions: An alternative material to low-temperature GaAs for optoelectronic applications, Appl. Phys. Lett. 66, 3304–3306 (1995),
https://doi.org/10.1063/1.113738
[11] A. Singh, S. Pal, H. Surdi, S.S. Prabhu, S. Mathimalar, V. Nanal, R.G. Pillay, and G.H. Döhler, Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection, Opt. Express 23, 6656–6661 (2015),
https://doi.org/10.1364/OE.23.006656
[12] A.J. Seeds and K.J. Williams, Microwave photonics, J. Lightwave Technol. 24, 4628–4641 (2006),
https://doi.org/10.1109/JLT.2006.885787
[13] T. Nagatsuma, G. Ducournau, and C.C. Renaud, Advances in terahertz communications accelerated by photonics, Nat. Photonics 10, 371–379 (2016),
https://doi.org/10.1038/nphoton.2016.65
[14] H.-J. Song, T.-W. Kim, S.J. Jo, C.-H. Lim, K.-H. Oh, S.-G. Ihn, and J.-I. Song, Microwave photonic mixer utilizing an InGaAs photoconductor for radio over fibre applications, IEICE Trans. Electron. 90, 457–464 (2007),
https://doi.org/10.1093/ietele/e90-c.2.457
[15] Y. Chen, S.S. Prabhu, S.E. Ralph, and D.T. McInturff, Trapping and recombination dynamics of low-temperature-grown InGaAs/InAlAs multiple quantum wells, Appl. Phys. Lett. 72, 439–442 (1998),
https://doi.org/10.1063/1.120766
[16] J. Mangeney, L. Joulaud, P. Crozat, and J.-M. Lourtioz, Ultrafast response (∼2.2 ps) of ion-irradiated InGaAs photoconductive switch at 1.55 μm, Appl. Phys. Lett. 83, 5551 (2004),
https://doi.org/10.1063/1.1633030
[17] C. Carmody, H.H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevicius, Ion-implanted In0.53Ga0.47As for ultrafast optoelectronic applications, Appl. Phys. Lett. 82, 3913–3915 (2003),
https://doi.org/10.1063/1.1579565
[18] O. Hatem, J. Cunningham, E.H. Linfield, C.D. Wood, A.G. Davies, P.J. Cannard, M.J. Robertson, and D.G. Moodie, Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs, Appl. Phys. Lett. 98, 121107 (2011),
https://doi.org/10.1063/1.3571289
[19] B. Globisch, R. Dietz, S. Nellen, T. Göbel, and M. Schell, Terahertz detectors from Be-doped low-temperature grown InGaAs/InAlAs: Interplay of annealing and terahertz performance, AIP Adv. 6, 125011 (2016),
https://doi.org/10.1063/1.4971843
[20] C. Graham, R. Gwilliam, and A. Seeds, Nitrogen ion implanted InP based photo-switch, Opt. Express 20, 26696–26703 (2012),
https://doi.org/10.1364/OE.20.026696
[21] M. Bieler, H. Füser, and K. Pierz, Time-domain optoelectronic vector network analysis on coplanar waveguides, IEEE Trans. Microw. Theory Techn. 63, 3775–3784 (2015),
https://doi.org/10.1109/TMTT.2015.2481426
[22] H. Eusèbe, J.F. Roux, J.L. Coutaz, and A. Krotkus, Photoconductivity sampling of low-temperature-grown Be-doped GaAs layers, J. Appl. Phys. 98, 033711 (2005),
https://doi.org/10.1063/1.2001151
[23] M.Y. Frankel, S. Gupta, J.A. Valdmanis, and G.A. Mourou, Terahertz attenuation and dispersion characteristics of coplanar transmission lines, IEEE Trans. Microw. Theory Techn. 39, 910–916 (1991),
https://doi.org/10.1109/22.81658
[24] C. Kastl, C. Karnetzky, A. Brenneis, F. Langrieger, and A. Holleitner, Topological insulators as ultrafast Auston switches in on-chip THz-circuits, IEEE J. Sel. Top. Quantum Electron. 23, 1–5 (2017),
https://doi.org/10.1109/JSTQE.2016.2641343
[25] K. Grigoras, A. Krotkus, and A. Deringas, Picosecond lifetime measurement in semiconductor by optoelectronic autocorrelation, Electron. Lett. 27, 1024–1025 (1991),
https://doi.org/10.1049/el:19910637
[26] A. Krotkus, S. Marcinkevicius, K. Grigoras, V. Pasiskevicius, and J.A. Tellefsen, Ultrafast carrier relaxation in low-temperature grown InxGa1-xAs layers, in: Proceedings of the 1994 Conference on Lasers and Electro-Optics Europe (Institute of Electrical & Electronics Engineers (IEEE), USA, 1994) pp. 365–366,
https://doi.org/10.1109/CLEOE.1994.636646
[27] C.-S. Choi, H.-S. Kang, W.-Y. Choi, D.-H. Kim, and K.-S. Seo, Phototransistors based on InP HEMTs and their applications to millimeter-wave radio-on-fibre systems, IEEE Trans. Microw. Theory Techn. 53, 256–263 (2005),
https://doi.org/10.1109/TMTT.2004.839323
[28] A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, 10-Gb/s millimeter-wave signal generation using photodiode bias modulation, J. Lightwave Technol. 24, 1725–1731 (2006),
https://doi.org/10.1109/JLT.2006.871066
[29] E. Rouvalis, M. Fice, C. Renaud, and A. Seeds, Optoelectronic detection of millimetre-wave signals with travelling-wave uni-travelling carrier photodiodes, Opt. Express 19, 2079–2084 (2011),
https://doi.org/10.1364/OE.19.002079
[30] F. Brendel, J. Poëtte, B. Cabon, T. Zwick, F. van Dijk, F. Lelarge, and A. Accard, Chromatic dispersion in 60 GHz radio-over-fibre networks based on mode-locked lasers, J. Lightwave Technol. 29, 3810–3816 (2011),
https://doi.org/10.1109/JLT.2011.2173902
[31] E. Peytavit, F. Pavanello, G. Ducournau, and J.-F. Lampin, Highly efficient terahertz detection by optical mixing in a GaAs photoconductor, Appl. Phys. Lett. 103, 201107 (2013),
https://doi.org/10.1063/1.4830360
[32] B. Sklar, Digital Communication: Fundamentals and Applications, 2nd ed. (Prentice Hall, Upper Saddle River, 2009),
https://www.pearson.com/us/higher-education/program/Sklar-Digital-Communications-Fundamentals-and-Applications-2nd-Edition/PGM127356.html