[PDF]    https://doi.org/10.3952/physics.v58i3.3811

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 232–245 (2018)


THE TRANSITION METAL TO LIGAND BONDING NATURE: A QUANTUM CHEMICAL STUDY OF π-ALLYL-RUTHENACYCLE MOLECULE
Aušra Vektarienė
Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
E-mail: ausra.vektariene@tfai.vu.lt
Received 23 March 2018; revised 6 May 2018; accepted 2018

Understanding of the transition metal (TM) to ligand (L) bonding nature is important for characterization of experimental observations. One of the methods to explain the TM to L interactions is the Dewar–Chatt–Duncanson (DCD) model. However, in most applications the validity of the DCD model is based on assumptions in order to explain trends in vibrational spectroscopy or other physical properties of TM complexes. In this paper the computational methodology for treatment of the π-allyl-ruthenacycle complex based on the density functional theory, restricted Hartree–Fock method, natural bond orbital and charge decomposition analysis is reported. It is shown how the DCD model emerges from the presented calculation scheme and how it relates with the physical properties and stability of this complex. It is important to note that in this work the determination of the DCD model operation is based on the defined computational procedure, not postulated beforehand. The calculated geometry parameters, vibrational frequencies and electron density arrangement for the π-allyl-ruthenacycle complex are in good agreement with the experiment and support the DCD model.
Keywords: Dewar–Chatt–Duncanson model, density functional theory, natural bond orbitals, charge decomposition analysis
PACS: 31.10.+z, 31.15.A-

PEREINAMOJO METALO IR LIGANDO SĄVEIKOS POBŪDIS: RUTENIO KOMPLEKSO ANALIZĖ, PAREMTA KVANTINĖS CHEMIJOS SKAIČIAVIMAIS
Aušra Vektarienė

Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Žurnale Nature 2017 m. publikuoti darbai parodė, kad ryšių tarp pereinamojo metalo ir ligando pobūdis gali keisti fotokatalizės vyksmų eigą, daryti įtaką elektroliuminescenciniams procesams organiniuose ir šviesą skleidžiančiuose prietaisuose.
Darbe teoriškai nagrinėjama pereinamojo metalo ir ligando ryšių kilmė. Vienas iš metodų, aškinantis ligando ir pereinamojo metalo ryšio pobūdį, yra Dewar-Chatt-Duncanson (DCD) modelis. Tačiau, aiškinant eksperimentą, DCD modelio galiojimas dažniausiai yra postuluojamas. Šiame darbe DCD modelio galiojimas rutenio cikliniame komplekse yra pagrįstas kvantinės chemijos skaičiavimais. Pasiūlyta skaičiavimo metodika remiasi tankio funkcionalo teorijos, natūralių ryšio orbitalių (angl. natural bond orbital), krūvio suskaidymo (angl. charge decomposition) analizės metodais. Skaičiavimo rezultatai, gauti remiantis straipsnyje aprašyta metodika, atskleidė DCD modelio galiojimo ypatumus Ru komplekse. Apskaičiuoti Ru komplekso geometrijos parametrai ir svyravimų dažniai koreliuoja su eksperimentu ir yra suderinami su DCD modeliu.

References / Nuorodos

[1] J.F. Hartwig, Carbon–heteroatom bond formation catalysed by organometallic complexes, Nature 455, 314322 (2008),
https://doi.org/10.1038/nature07369
[2] J. Twilton, C. Le, P. Zhang, M.H. Shaw, R.W. Evans, and D.W.C. MacMillan, The merger of transition metal and photocatalysis, Nat. Rev. Chem. 1, 118 (2017),
https://doi.org/10.1038/s41570-017-0052
[3] M.S. Mehata, Y. Yang, Z.J. Qu, J.S. Chen, F.J. Zhao, and K.L. Han, Spin mixed charge transfer states of iridium complex Ir(ppy)3: transient absorption and time-resolved photoluminescence, RSC Adv. 5, 3409499 (2015),
https://doi.org/10.1039/c5ra01404b
[4] K. Kalyanasundaram and M. Grätzel, Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coord. Chem. Rev. 177, 347414 (1998),
https://doi.org/10.1016/S0010-8545(98)00189-1
[5] M. Gerloch and E.C. Constable, Transition Metal Chemistry (VCH, Weinheim, 1994),
https://doi.org/10.1002/bbpc.19950990619
[6] E.C. Constable, Metals and Ligand Reactivity (VCH, Weinheim, 1996),
https://doi.org/10.1002/ange.19961081541
[7] Ch. Elschenbroich and A. Salzer, Organometallics, 2nd ed. (VCH, Weinheim, 1992),
https://trove.nla.gov.au/version/42575974
[8] T.A. Albright, J.K. Burdett, and M.H. Whangbo, Orbital Interactions in Chemistry (Wiley, New York, 1985),
https://www.fzu.cz/~knizek/literatura/Albright2013.pdf
[9] M.J.S. Dewar, A review of the π-complex theory, Bull. Soc. Chim. Fr. 18, C71–C79 (1951)
[10] J. Chatt and L.A. Duncanson, Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes, J. Chem. Soc., 2939–2947 (1953),
https://doi.org/10.1039/JR9530002939
[11] F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry (Wiley & Sons, New York, 1980),
https://www.amazon.co.uk/Advanced-Inorganic-Chemistry-Comprehensive-Text/dp/0471027758/
[12] R.K. Hocking and T.W. Hambley, Database analysis of transition metal carbonyl bond lengths: Insight into the periodicity of π backbonding, σ donation, and the factors affecting the electronic structure of the TM–C꞉O moiety, Organometallics 26, 2815–2823 (2007),
https://doi.org/10.1021/om061072n
[13] S.A. Decker and M. Klobukowski, The first carbonyl bond dissociation energies of M(CO)5 and M(CO)4(C2H2) (M = Fe, Ru, and Os): The role of the acetylene ligand from a density functional perspective, J. Am. Chem. Soc. 120, 9342–9355 (1998),
https://doi.org/10.1021/ja981197m
[14] G.N. Lewis, The atom and the molecule, J. Am. Chem. Soc. 38, 762–785 (1916),
https://doi.org/10.1021/ja02261a002
[15] J.M. Foster and S.F. Boys, Canonical configurational interaction procedure, Rev. Mod. Phys. 32, 300–302 (1960),
https://doi.org/10.1103/RevModPhys.32.300
[16] C. Edmiston and K. Ruedenberg, Localized atomic and molecular orbitals, Rev. Mod. Phys. 35, 457–65 (1963),
https://doi.org/10.1103/RevModPhys.35.457
[17] C.C.J. Roothaan, New developments in molecular orbital theory, Rev. Mod. Phys. 23(2), 69–88 (1951)
https://doi.org/10.1103/RevModPhys.23.69
[18] C. Edmiston and K. Ruedenberg, Localized atomic and molecular orbitals. II, J. Chem. Phys. 43, S97–S116 (1965),
https://doi.org/10.1063/1.1701520
[19] W. England, L.S. Salmon, and K. Ruedenberg, Localized molecular orbitals: A bridge between chemical intuition and molecular quantum mechanics, Top. Curr. Chem. 23, 31–123 (1971),
https://doi.org/10.1007/Bfb0051440
[20] F. Weinhold and C.R. Landis, Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective (Cambridge University Press, Cambridge, 2005),
https://www.cambridge.org/academic/subjects/chemistry/physical-chemistry/valency-and-bonding-natural-bond-orbital-donor-acceptor-perspective?format=HB
[21] F. Weinhold, Natural Bond Orbital Methods, in: Encyclopedia of Computational Chemistry (Wiley, Chichester, 1998),
https://doi.org/10.1002/0470845015.cna009
[22] C.R. Landis, A.E. Reed, L.A. Curtiss, and F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev. 88, 899–926 (1988),
https://doi.org/10.1021/cr00088a005
[23] S. Dapprich and G. Frenking, Investigation of donor-acceptor interactions: a charge decomposition analysis using fragment molecular orbitals, J. Phys. Chem. 99, 9352–9362 (1995),
https://doi.org/10.1021/j100023a009
[24] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al., Gaussian 09 (Gaussian Inc., Wallingford, CT, USA, 2009),
http://gaussian.com/glossary/g09/
[25] A. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38, 3098–3100 (1988),
https://doi.org/10.1103/PhysRevA.38.3098
[26] Ch. Lee, W. Yang, and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37, 785–789 (1988),
https://doi.org/10.1103/PhysRevB.37.785
[27] F.-Q. Shi, X. Li, Y. Xia, L. Zhang, and Z.-X. Yu, DFT study of the mechanisms of in water Au(I)-catalyzed tandem [3,3]-rearrangement/Nazarov reaction/[1,2]-hydrogen shift of enynyl acetates: a proton-transport catalysis strategy in the water-catalyzed [1,2]-hydrogen shift, J. Am. Chem. Soc. 129, 15503–15512 (2007),
https://doi.org/10.1021/ja071070
[28] A. Becke, Density functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98, 5648–5652 (1993),
https://doi.org/10.1063/1.464913
[29] G. Kovacs, G. Ujaque, and A. Lledos, The reaction mechanism of the hydroamination of alkenes catalyzed by gold(i)–phosphine: the role of the counterion and the N-nucleophile substituents in the proton-transfer step, J. Am. Chem. Soc. 130, 853–864 (2008),
https://doi.org/10.1021/ja073578i
[30] A. Vektariene, G. Vektaris, and D.W.H. Rankin, DFT study of the regioselectivity of addition of sulfenylchloride to ethenes, Heteroatom Chem. 18(7), 695–703 (2007),
https://doi.org/10.1002/hc.20378
[31] R. Janciene, Z. Stumbreviciute, A. Vektariene, L. Kosychova, A. Klimavicius, A. Palaima, and B. Puodziunaite, Synthesis of novel annelated systems based on the interaction and reactivity estimation of amino-1,5-benzodiazepin-2-ones with dimethyl-2-oxoglutaconate, J. Heterocyclic Chem. 461, 339–1345 (2009),
https://doi.org/10.1002/jhet.226
[32] R. Janciene, A. Vektariene, Z. Stumbreviciute, and B. Puodziunaite, Experimental and theoretical investigation of substituent effects in a two-pathway reaction of tetrahydro-1,5-benzodiazepine-2-thiones, Monatsh. Chem. 142(6), 609–618 (2011),
https://doi.org/10.1007/s00706-011-0496-4
[33] A. Vektariene, Insights into the mechanism of the benzoannelated thieno[3,2-b]furan halogenation. Importance of HOMO–HOMO interaction, J. Phys. Chem. A 117, 8449–8458 (2013),
https://doi.org/10.1021/jp402257u
[34] G. Mazzone, N. Russo, and E. Sicilia, Homogeneous gold catalysis: hydration of 1,2-diphenylacetylene with methanol in aqueous media.
A theoretical viewpoint, Organometallics 31, 3074–3080 (2012); J. Org. Chem. 79, 1954–1970 (2014),
https://doi.org/10.1021/om2012369
[35] A.E. Ledesma, C. Contreras, J. Svoboda, A. Vektariene, and S.A. Brandan, Theoretical structures and experimental vibrational spectra of isomeric benzofused thieno[3,2-b] furan compounds, J. Mol. Struct. 1063, 356 (2014); J. Mol. Struct. 967, 159–165 (2010),
https://doi.org/10.1016/j.molstruc.2014.01.087
[36] G. Mazzone, N. Russo, and E. Sicilia, Catalytic role of dinuclear σ, π-acetylide gold(i) complexes in the hydroamination of terminal alkynes: theoretical insights, J. Chem. Theory Comput. 11, 581–590 (2015),
https://doi.org/10.1021/ct500849m
[37] A. Vektariene, Theoretical study on the mechanism of thieno[3,2-b]benzofuran bromination: the importance of Lewis and non-Lewis type NBOs interactions along the reaction path, J. Phys. Org. Chem. 29, 21–28 (2016),
https://doi.org/10.1002/poc.3483
[38] A. Schaefer, C. Huber, and R. Ahlrichs, Fully optimized contracted Gaussian-basis sets of triple zeta valence quality for atoms Li to Kr, J. Chem. Phys. 100, 5829–5835 (1994),
https://doi.org/10.1063/1.467146
[39] A. Schaefer, H. Horn, and R. Ahlrichs, Fully optimized contracted Gaussian basis sets for atoms Li to Kr, J. Chem. Phys. 97, 2571–2577 (1992),
https://doi.org/10.1063/1.463096
[40] B.Y. Park, T.P. Montgomery, V.J. Garza, and J.M. Krische, Ruthenium catalyzed hydrohydroxyalkylation of isoprene with heteroaromatic secondary alcohols: isolation and reversible formation of the putative metallacycle intermediate, J. Am. Chem. Soc. 135, 16320–16323 (2013),
https://doi.org/10.1021/ol401184k
[41] V. Jonas, G. Frenking, and M.T. Reetz, Comparative theoretical study of Lewis acid-base complexes of BH3, BF3, BCl3, AlCl3, and SO2, J. Am. Chem. Soc. 116, 8741–8753 (1994),
https://doi.org/10.1021/ja00098a037
[42] P. Jerabek, H.W. Roesky, G. Bertrand, and G. Frenking, Coinage metals binding as main group elements: structure and bonding of the carbene complexes [TM(cAAC)2] and [TM(cAAC)2] + (TM = Cu, Ag, Au), J. Am. Chem. Soc. 136, 17123–17135 (2014),
https://dx.doi.org/10.1021/ja508887s
[43] R. Dennington, T. Keith, and J. Millam, GaussView, Version 5.0.9 (Semichem, Inc., Shawnee Mission, KS, USA, 2009)