[PDF]    https://doi.org/10.3952/physics.v58i3.3812

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 246–253 (2018)


MINIMIZATION OF SHIELDING EFFECTIVENESS OF ENERGY SAVING WINDOWS IN WiFi FREQUENCY RANGE
Evaldas Bilotas, Paulius Ragulis, and Žilvinas Kancleris
Department of Physical Technologies, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
E-mail: evaldas.bilotas@ftmc.lt; paulius.ragulis@ftmc.lt
Received 18 April 2018; revised 31 May 2018; accepted 21 June 2018

We investigated the dependence of shielding effectiveness of energy saving double-glazed windows on their longitudinal dimensions (thickness of metalized and uncoated glass panes and the gap between them) both experimentally and theoretically. It was shown that by changing the longitudinal dimension of the window the minimum of shielding effectiveness could be shifted to the desirable frequency range. Applying this approach to the WiFi frequency range we demonstrated that shielding effectiveness can be decreased by 7–9 dB for the 2.4 GHz WiFi connection and by 14–17 dB for the 5 GHz connection in comparison with that of an ordinary energy saving double-glazed window. Theoretical considerations have been confirmed by experimental investigation of the dependence of shielding effectiveness on the gap between glass panes.
Keywords: energy saving windows, shielding effectiveness, microwave propagation, WiFi, Fabry–Perot resonance
PACS: 87.50.S-, 07.50.Hp, 42.25.Bs, 42.25.Hz

ENERGIJĄ TAUPANČIŲ LANGŲ EKRANAVIMO EFEKTYVUMO MINIMIZACIJA WiFi DAŽNIŲ RUOŽE
Evaldas Bilotas, Paulius Ragulis, Žilvinas Kancleris

Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Teoriškai ir eksperimentiškai ištyrinėta šiuolaikinių energiją tausojančių stiklo paketų elektromagnetinių bangų pralaidumo mikrobangų dažnių ruože priklausomybė nuo išilginių lango matmenų (stiklų storio ir tarpo tarp jų dydžio). Keičiant stiklo paketo išilginius matmenis, ekranavimo efektyvumo minimumas gali būti nukreiptas į pageidaujamą dažnių ruožą. Pademonstruota, kad pakeičiant tik stiklo paketo išilginius matmenis, bevielio ryšio (WiFi) signalo stiprumą per stiklo paketus galima padidinti 7–9 dB (2.4 GHz ruože) ir net 14–17 dB (5 GHz ruože), palyginti su standartiniais langų paketais. Teorinius ekranavimo efektyvumo skaičiavimus patvirtino eksperimentiniai tyrimo rezultatai, atlikti parenkant atitinkamą stiklų ir tarpo tarp jų storį.

References / Nuorodos

[1] European Commission, Energy Saving,
https://ec.europa.eu/energy/en/topics/energyefficiency/buildings
[2] A. Asp, Y. Sydorov, M. Valkama, and J. Niemelä, Radio signal propagation and attenuation measurements for modern residential buildings, in: Proceedings of the 2012 IEEE Globecom Workshops (IEEE, 2012) pp. 580–584,
https://doi.org/10.1109/GLOCOMW.2012.6477638
[3] M.D’Amore, D. Lampasi, M. Sarto, A. Tamburrano, V. De Santis, and M. Feliziani, Optimal design of multifunctional transparent shields against radio frequency electromagnetic fields, in: Proceedings of the 2009 Electromagnetic Compatibility Symposium Adelaide (IEEE, 2009) pp. 81–86,
https://doi.org/10.1109/EMCSA.2009.5349770
[4] G.I. Kiani, A. Karlsson, L. Olsson, and K.P. Esselle, Glass characterization for designing frequency selective surfaces to improve transmission through energy saving glass windows, in: Proceedings of the 2007 Asia-Pacific Microwave Conference (IEEE, 2007) pp. 1–4,
https://doi.org/10.1109/APMC.2007.4554974
[5] H. Tommerup, J. Rose, and S. Svendsen, Energy-efficient houses built according to the energy performance requirements introduced in Denmark in 2006, Energy Build. 39(10), 1123–1130 (2007),
https://doi.org/10.1016/j.enbuild.2006.12.011
[6] R.B. Schulz, V. Plantz, and D. Brush, Shielding theory and practice, IEEE Trans. Electromagn. Compat. 30(3), 187–201 (1988),
https://doi.org/10.1109/15.3297
[7] P. Ängskog, M. Bäckström, and B. Vallhagen, Measurement of radio signal propagation through window panes and energy saving windows, in: Proceedings of the 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC) (IEEE, 2015) pp. 74–79,
https://doi.org/10.1109/ISEMC.2015.7256135
[8] M. D’Amore, S. Greco, D. Lampasi, M. Sarto, and A. Tamburrano, A new structure of transparent films for heat control and electromagnetic shielding of windows, in: 2009 International Symposium on Electromagnetic Compatibility – EMC Europe (IEEE, 2009) pp. 1–4,
https://doi.org/10.1109/EMCEUROPE.2009.5189719
[9] P. Ragulis, R. Simniškis, and Ž. Kancleris, Shift and elimination of microwave Fabry-Perot resonances in a dielectric covered with a thin metal layer, J. Appl. Phys. 117(16), 165302 (2015),
https://doi.org/10.1063/1.4918917
[10] H.-Y. Chen and T.-H. Lin, Dual-band frequency selective surface for improving the transmission of Bluetooth and WLAN signals through an energy-saving glass, J. Chin. Inst. Eng. 39(3), 331–336 (2016),
https://doi.org/10.1080/02533839.2015.1112245
[11] G.I. Kiani, A.R. Weily, and K.P. Esselle, A novel absorb/transmit FSS for secure indoor wireless networks with reduced multipath fading, IEEE Microw. Wirel. Compon. Lett. 16(6), 378–380 (2006),
https://doi.org/10.1109/LMWC.2006.875589
[12] T. Frenzel, J. Rohde, and J. Opfer, Elektromagnetische Schirmung von Gebäuden (BSI, Bonn, 2007),
[PDF]
[13] D.A. Lampasi, A. Tamburrano, S. Bellini, M. Tului, A. Albolino, and M.S. Sarto, Effect of grain size and distribution on the shielding effectiveness of transparent conducting thin films, IEEE Trans. Electromagn. Compat. 56(2), 352–359 (2014),
https://doi.org/10.1109/TEMC.2013.2282085
[14] Y. Corredores, P. Besnier, X. Castel, J. Sol, C. Dupeyrat, and P. Foutrel, Adjustment of shielding effectiveness, optical transmission, and sheet resistance of conducting films deposited on glass substrates, IEEE Trans. Electromagn. Compat. 59(4), 1070–1078 (2017),
https://doi.org/10.1109/TEMC.2017.2654269
[15] M. Gustafsson, A. Karlsson, A.P. Rebelo, and B. Widenberg, Design of frequency selective windows for improved indoor outdoor communication, IEEE Trans. Antennas Propag. 54(6), 1897–1900 (2006),
https://doi.org/10.1109/TAP.2006.875926
[16] S. Habib, M.F.U. Butt, and G.I. Kiani, Parametric analysis of a band-pass FSS for double glazed soft-coated energy saving glass, in: 2015 International Symposium on Antennas and Propagation (IEEE, 2015) pp. 1–4,
https://ieeexplore.ieee.org/document/7447552
[17] B. Widenberg and J.V.R. Rodríguez, Design of Energy Saving Windows with High Transmission at 900 MHz and 1800 MHz, Technical Report LUTEDX/(TEAT-7110/1-14/(2002), Vol. TEAT-7110 (Lund Institute of Technology, 2002),
[PDF]
[18] S.I. Sohail, G. Kiani, and K. Esselle, Parametric analysis of RF and microwave transmission through single and multiple layers of float glass, in: Asia-Pacific Microwave Conference 2011 (IEEE, 2011) pp. 1454–1457,
https://ieeexplore.ieee.org/document/6174036
[19] B. Foulonneau, F. Gaudaire, and Y. Gabillet, Measurement method of electromagnetic transmission loss of building components using two reverberation chambers, Electron. Lett. 32(23), 2130–2131 (1996),
https://doi.org/10.1049/el:19961417
[20] Ž. Kancleris, G. Šlekas, and A. Matulis, Modeling of two-dimensional electron gas sheet in FDTD method, IEEE Trans. Antennas Propag. 61(2), 994–996 (2013),
https://doi.org/10.1109/TAP.2012.2225819
[21] P. Ragulis, P. Ängskog, R. Simniškis, B. Vallhagen, M. Bäckström, and Ž. Kancleris, Shielding effectiveness of modern energy-saving glass panes and windows, IEEE Trans. Antennas Propag. 65(8), 4250–4258 (2017),
https://doi.org/10.1109/TAP.2017.2718223
[22] S.J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University, New Brunswick, NJ, 2002),
http://eceweb1.rutgers.edu/~orfanidi/ewa/
[23] S.I. Sohail, K.P. Esselle, and G. Kiani, Design of a bandpass FSS on dual layer energy saving glass for improved RF communication in modern buildings, in: Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation (IEEE, 2012) pp. 1–2,
https://doi.org/10.1109/APS.2012.6348600