[PDF]    https://doi.org/10.3952/physics.v58i3.3817

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 283–293 (2018)


AEROSOL PARTICLE FORMATION IN THE LITHUANIAN HEMI-BOREAL FOREST
Vadimas Dudoitisa, Genrik Mordasa, Steigvilė Byčenkienėa, Kristina Plauškaitėa, Julija Pauraitėa, Dalia Jasinevičienėa, Vitas Marozasb, Gintaras Pivorasb, Gintautas Mozgerisb, Algirdas Augustaitisb, and Vidmantas Ulevičiusa
aSRI Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
bAleksandras Stulginskis University, Studentų 13, 53362 Akademija, Lithuania
E-mail: vadimas.dudoitis@ftmc.lt
Received 24 April 2018; revised 13 August 2018; accepted 15 October 2018

Aerosol particle observations are needed to determine the conditions of particle formation and growth in different environments. This research focuses on new particle formation (NPF) events in the hemi-boreal forest environment at the Aukštaitija Integrated Monitoring Station (IMS) (55°26ʹN and 26°04ʹE, 170 m above the sea level). The parameterisation of aerosol particle Nucleation I (3–10 nm), Nucleation II (10–20 nm) and Aitken (20–100 nm) modes was performed, their inputs to the total particle number concentration (PNC) and distribution were assessed. It has been estimated that around 40% of days in spring and 22% in summer were NPF event days. The highest contribution of Nucleation mode I aerosol particles was observed in June, reaching up to 38% of the total PNC values. The mean growth rate (GR) and condensation sink (CS) values at the Aukštaitija IMS in April and May were 2.9 nm·h–1, 1.30·10–3 s–1 and 5.3 nm·h–1, 1.35·10–3 s–1, respectively. The GR and CS values were well in agreement with the results obtained from other hemi-boreal forest sites in the Baltic Sea region.
Keywords: new particle formation, nucleation, SMPS, hemi-boreal forest
PACS: 92.60.Mt

AEROZOLIO DALELIŲ SUSIDARYMAS LIETUVOS PUSIAU BOREALINIUOSE MIŠKUOSE
Vadimas Dudoitisa, Genrik Mordasa, Steigvilė Byčenkienėa, Kristina Plauškaitėa, Julija Pauraitėa, Dalia Jasinevičienėa, Vitas Marozasb, Gintaras Pivorasb, Gintautas Mozgerisb, Algirdas Augustaitisb, Vidmantas Ulevičiusa

aVMTI Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
bAleksandro Stulginskio universitetas, Kauno r., Lietuva

Aerozolio dalelių susidarymo ir augimo procesų įvairiose aplinkose stebėjimai yra būtini siekiant ištirti sąlygas, prie kurių šie reiškiniai vyksta. Darbe nagrinėjamas naujų aerozolio dalelių susidarymas Aukštaitijos kompleksinio monitoringo stoties (IMS) miškuose. Įvertinti pagrindiniai fizikiniai aerozolio dalelių 1-osios nukleacinės (3–10 nm), 2-osios nukleacinės (10–20 nm) ir Aitkeno modų (20–100 nm) parametrai, nustatytas šių modų bendras indėlis į skaitinį aerozolio dalelių dydžių pasiskirstymą ir koncentraciją. Pavasarį buvo nustatyti 40 % naujų dalelių susidarymo atvejai, vasarą – 22 %. Didžiausias 1-osios nukleacinės modos indėlis į skaitinę dalelių koncentraciją siekė iki 38 % nuo bendros koncentracijos, jis buvo stebimas 2016 m. birželio mėnesį. Vidutinės aerozolio dalelių augimo greičio (GR) ir kondensacinio nuotėkio (CS) vertės 2016 m. balandžio–gegužės mėn. sudarė atitinkamai 2,9 nm·h–1, 1,30·10–3 s–1 ir 5,3 nm·h–1, 1,35·10–3 s–1. Šio tyrimo metu nustatytos GR ir CS vertės yra artimos vertėms, gautoms iš kitų Baltijos jūros regiono miškingų vietovių.

References / Nuorodos

[1] C.D. O’Dowd and T. Hoffmann, Coastal new particle formation: a review of the current state-of-the-art, Environ. Chem. 2(4), 245 (2005),
https://doi.org/10.1071/EN05077
[2] G. Mordas, K. Plauškaitė, N. Prokopčiuk, V. Dudoitis, C. Bozzetti, and V. Ulevičius, Observation of new particle formation on Curonian Spit located between continental Europe and Scandinavia, J. Aerosol Sci. 97, 38–55 (2016),
https://doi.org/10.1016/j.jaerosci.2016.03.002
[3] T.M. Ruuskanen, M. Kaasik, P.P. Aalto, U. Horrak, M. Vana, M. Martensson, Y.J. Yoon, P. Keronen, G. Mordas, D. Ceburnis, et al., Concentrations and fluxes of aerosol particles during the LAPBIAT measurement campaign at Varrio field station, Atmos. Chem. Phys. 7(14), 3683–3700 (2007),
https://doi.org/10.5194/acp-7-3683-2007
[4] M.D. Maso, A. Hyvarinen, M. Komppula, P. Tunved, V.-M. Kerminen, H. Lihavainen, Y. Oviisanen, H.-C. Hansson, and M. Kulmala, Annual and interannual variation in boreal forest aerosol particle number and volume concentration and their connection to particle formation, Tellus B 60(4), 495–508 (2008),
https://doi.org/10.1111/j.1600-0889.2008.00366.x
[5] T. Suni, M. Kulmala, A. Hirsikko, T. Bergman, L. Laakso, P.P. Aalto, R. Leuning, H. Cleugh, S. Zegelin, D. Hughes, et al., Formation and characteristics of ions and charged aerosol particles in a native Australian Eucalypt forest, Atmos. Chem. Phys. 8(1), 129–139 (2008),
https://doi.org/10.5194/acp-8-129-2008
[6] V. Vakkari, H. Laakso, M. Kulmala, A. Laaksonen, D. Mabaso, M. Molefe, N. Kgabi, and L. Laakso, New particle formation events in semi-clean South African savannah, Atmos. Chem. Phys. 11(7), 3333–3346 (2011),
https://doi.org/10.5194/acp-11-3333-2011
[7] M. Kanakidou, J.H. Seinfeld, S.N. Pandis, I. Barnes, F.J. Dentener, M.C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C.J. Nielsen, et al., Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys. 5(4), 1053–1123 (2005),
https://doi.org/10.5194/acp-5-1053-2005
[8] J. Kesselmeier, U. Kuhn, A. Wolf, M. Andreae, P. Ciccioli, E. Brancaleoni, M. Frattoni, A. Guenther, J. Greenberg, P. De Castro Vasconcellos, T. De Oliva, T. Tavares, and P. Artaxo, Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia, Atmos. Environ. 34(24), 4063–4072 (2000),
https://doi.org/10.1016/S1352-2310(00)00186-2
[9] A. Kiendler-Scharr, J. Wildt, M.D. Maso, T. Hohaus, E. Kleist, T.F. Mentel, R. Tillmann, R. Uerlings, U. Schurr, and A. Wahner, New particle formation in forests inhibited by isoprene emissions, Nature 461(7262), 381–384 (2009),
https://doi.org/10.1038/nature08292
[10] J.D. Allan, P.I. Williams, J. Najera, J.D. Whitehead, M.J. Flynn, J.W. Taylor, D. Liu, E. Darbyshire, L.J. Carpenter, R. Chance, S.J. Andrews, S.C. Hackenberg, and G. McFiggans, Iodine observed in new particle formation events in the Arctic atmosphere during ACCACIA, Atmos. Chem. Phys. 15(10), 5599–5609 (2015),
https://doi.org/10.5194/acp-15-5599-2015
[11] J.D. Cline and T.S. Bates, Dimethyl sulfide in the Equatorial Pacific Ocean: A natural source of sulfur to the atmosphere, Geophys. Res. Lett. 10(10), 949–952 (1983),
https://doi.org/10.1029/GL010i010p00949
[12] A.J. Pettibone, Toward a Better Understanding of New Particle Formation, PhD thesis (University of Iowa, 2009),
https://ir.uiowa.edu/etd/420/
[13] M. Kulmala, Atmospheric science: How particles nucleate and grow, Science 302(5647), 1000–1001 (2003),
https://doi.org/10.1126/science.1090848
[14] M. Sipilä, T. Berndt, T. Petäjä, D. Brus, J. Vanhanen, F. Stratmann, J. Patokoski, R.L. Mauldin, A.-P. Hyvärinen, H. Lihavainen, and M. Kulmala, The role of sulfuric acid in atmospheric Nucleation, Science 327(5970), 1243–1246 (2010),
https://doi.org/10.1126/science.1180315
[15] J. Gao, T. Wang, X. Zhou, W. Wu, and W. Wang, Measurement of aerosol number size distributions in the Yangtze River delta in China: Formation and growth of particles under polluted conditions, Atmos. Environ. 43(4), 829–836 (2009),
https://doi.org/10.1016/j.atmosenv.2008.10.046
[16] Z.J. Wu, L. Poulain, W. Birmili, J. Grob, N. Niedermeier, Z.B. Wang, H. Herrmann, and A. Wiedensohler, Some insights into the condensing vapors driving new particle growth to CCN sizes on the basis of hygroscopicity measurements, Atmos. Chem. Phys. 15(22), 13071–13083 (2015),
https://doi.org/10.5194/acp-15-13071-2015
[17] A. Hamed, W. Birmili, J. Joutsensaari, S. Mikkonen, A. Asmi, B. Wehner, G. Spindler, A. Jaatinen, A. Wiedensohler, H. Korhonen, K.E.J. Lehtinen, and A. Laaksonen, Changes in the production rate of secondary aerosol particles in Central Europe in view of decreasing SO2 emissions between 1996 and 2006, Atmos. Chem. Phys. 10(3), 1071–1091 (2010),
https://doi.org/10.5194/acp-10-1071-2010
[18] B. Bonn and G.K. Moorgat, New particle formation during a- and b-pinene oxidation by O3, OH and NO3, and the influence of water vapour: particle size distribution studies, Atmos. Chem. Phys. 2(3), 183–196 (2002),
https://doi.org/10.5194/acp-2-183-2002
[19] A. Metzger, B. Verheggen, J. Dommen, J. Duplissy, A.S.H. Prevot, E. Weingartner, I. Riipinen, M. Kulmala, D.V. Spracklen, K.S. Carslaw, and U. Baltensperger, Evidence for the role of organics in aerosol particle formation under atmospheric conditions, Proc. Natl. Acad. Sci. 107(15), 6646–6651 (2010),
https://doi.org/10.1073/pnas.0911330107
[20] A. Wiedensohler, D.S. Covert, E. Swietlicki, P. Aalto, J. Heintzenberg, and C. Leck, Occurrence of an ultrafine particle mode less than 20 nm in diameter in the marine boundary layer during Arctic summer and autumn, Tellus B 48(2), 213–222 (1996),
https://doi.org/10.3402/tellusb.v48i2.15887
[21] T. Nieminen, K.E.J. Lehtinen, and M. Kulmala, Sub-10 nm particle growth by vapor condensation – effects of vapor molecule size and particle thermal speed, Atmos. Chem. Phys. 10(20), 9773–9779 (2010),
https://doi.org/10.5194/acp-10-9773-2010
[22] T. Hussein, A. Puustinen, P.P. Aalto, J.M. Makela, K. Hameri, and M. Kulmala, Urban aerosol number size distributions, Atmos. Chem. Phys. 4(2), 391–411 (2004),
https://doi.org/10.5194/acp-4-391-2004
[23] V. Ulevičius, S. Byčenkienė, C. Bozzetti, A. Vlachou, K. Plauškaitė, G. Mordas, V. Dudoitis, G. Abbaszade, V. Remeikis, A. Garbaras, et al., Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe, Atmos. Chem. Phys. 16(9), 5513–5529 (2016),
https://doi.org/10.5194/acp-16-5513-2016
[24] R. Zhang, A. Khalizov, L. Wang, M. Hu, and W. Xu, Nucleation and growth of nanoparticles in the atmosphere, Chem. Rev. 112(3), 1957–2011 (2012),
https://doi.org/10.1021/cr2001756
[25] I. Riipinen, T. Yli-Juuti, J.R. Pierce, T. Petaja, D.R. Worsnop, M. Kulmala, and N.M. Donahue, The contribution of organics to atmospheric nanoparticle growth, Nat. Geosci. 5(7), 453–458 (2012),
https://doi.org/10.1038/ngeo1499
[26] A. Augustaitis, I. Augustaitienė, M. Baugarten, S. Bičenkienė, R. Girgždienė, G. Kulbokas, E. Linkevičius, V. Marozas, M. Mikalajūnas, G. Mordas, et al., Tree-ring formation as an indicator of forest capacity to adapt to the main threats of environmental changes in Lithuania, Sci. Total Environ. 615, 1247–1261 (2018),
https://doi.org/10.1016/j.scitotenv.2017.09.169
[27] A. Augustaitis, D. Šopauskienė, and I. Baužienė, Direct and indirect effects of regional air pollution on tree crown defoliation, Balt. For. 16(1), 23–34 (2010),
https://www.balticforestry.mi.lt/bf/index.php?option=com_content&view=article&catid=12&id=41
[28] P.G. Gormley and M. Kennedy, Diffusion from a stream flowing through a cylindrical tube, Proc. R. Ir. Acad. A 52, 163–169 (1948–1950),
https://www.jstor.org/stable/20488498
[29] M. Dal Maso, M. Kulmala, I. Riipinen, R. Wagner, T. Hussein, P.P. Aalto, and K.E.J. Lehtinen, Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland, Boreal Env. Res. 10(October), 323–336 (2005),
[PDF]
[30] H.E. Manninen, T. Nieminen, E. Asmi, S. Gagne, S. Häkkinen, K. Lehtipalo, P. Aalto, M. Vana, A. Mirme, S. Mirme, et al., EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events, Atmos. Chem. Phys. 10(16), 7907–7927 (2010),
https://doi.org/10.5194/acp-10-7907-2010
[31] M. Kulmala, H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V.-M. Kerminen, W. Birmili, and P.H. McMurry, Formation and growth rates of ultrafine atmospheric particles: a review of observations, J. Aerosol Sci. 35(2), 143–176 (2004),
https://doi.org/10.1016/j.jaerosci.2003.10.003
[32] J. Pauraitė, G. Mordas, S. Byčenkienė, and V. Ulevičius, Spatial and temporal analysis of organic and black carbon mass concentrations in Lithuania, Atmosphere 6(8), 1229–1242 (2015),
https://doi.org/10.3390/atmos6081229
[33] A. Asmi, A. Wiedensohler, P. Laj, A.-M. Fjaeraa, K. Sellegri, W. Birmili, E. Weingartner, U. Baltensperger, V. Zdimal, N. Zikova, et al., Number size distributions and seasonality of submicron particles in Europe 2008–2009, Atmos. Chem. Phys. 11(11), 5505–5538 (2011),
https://doi.org/10.5194/acp-11-5505-2011
[34] K. Plauškaitė, N. Špirkauskaitė, S. Byčenkienė, S. Kecorius, D. Jasinevičienė, T. Petelski, T. Zielinski, J. Andriejauskienė, R. Barisevičiūtė, A. Garbaras, P. Makuch, V. Dudoitis, and V. Ulevičius, Characterization of aerosol particles over the southern and South-Eastern Baltic Sea, Mar. Chem. 190, 13–27 (2017),
https://doi.org/10.1016/j.marchem.2017.01.003