[PDF] https://doi.org/10.3952/physics.v58i4.3878

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 58, 337–345 (2018)


PHOTOPHYSICAL RELAXATION MECHANISM OF EXCITED PHTALIMIDE COMPOUNDS
 
Ignas Čiplysa, Ryoji Oritab, Shinji Andob, and Vidmantas Gulbinasa
 aCenter for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
bDepartment of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo 152-8552, Japan
 
E-mail: vidmantas.gulbinas@ftmc.lt
Received 11 December 2018; accepted 2 January 2019

Fluorescent polymers are one of the most desired materials for making novel flexible electronic components or spectral converters. Favourable properties of polyimides (PIs) make them a potentially attractive class of polymers but, unfortunately, they generally show a very weak fluorescence. As a result, there has been a large amount of work directed towards finding the reasons behind the lack of fluorescence of PIs and making their new fluorescent variants. Amine-substituted phtalimides are heavily used as model compounds for fluorescent PIs. In this work we have examined the photophysical relaxation mechanism of such two phtalimides (3Pi and 3Pyr) that were previously discovered to have low quantum yields of fluorescence. Our aim was to find the reason behind this lack of fluorescence and to suggest ways to make these properties more attractive. We have investigated the photophysics of phtalimides by time resolved fluorescence and ultrafast transient absorption techniques in solvent mixtures of different viscosities. Our results demonstrate that intramolecular rotation is a crucial process that opens up an alternative relaxation pathway to fluorescence in phtalimides, which has to be suppressed for designing more fluorescent materials.
Keywords: fluorescent polymers, ultrafast spectroscopy, photophysics
PACS: 33.50.Dq, 82.53.Eb

RELAKSACIJOS MECHANIZMAS SUŽADINTUOSE FTALIMIDUOSE
Ignas Čiplysa, Ryoji Oritab, Shinji Andob, Vidmantas Gulbinasa

aFizinių ir technologijos mokslų centras, Vilnius, Lietuva
bTokijo technologijos institutas, Tokijas, Japonija
 
Fluorescuojantys polimerai yra vieni labiausiai pageidaujamų junginių naujos kartos lanksčių elektronikos komponentų arba spektrinių konverterių gamybai. Dėl savo palankių savybių gamybai galėtų būti naudojami poliamidai, tačiau jie fluorescuoja labai silpnai. Todėl buvo atlikta nemažai tyrimų siekiant išsiaiškinti silpnos poliamidų fluorescencijos priežastis ir sukurti geresnius poliamidų variantus. Ftalimidai su amino grupėmis paprastai naudojami kaip modeliniai junginiai fluorescuojantiems poliamidams. Šiame darbe tirtas fotofizikinis dviejų tokių ftalimidų (3Pi ir 3Pyr) relaksacijos mechanizmas. Ankstesniame darbe buvo nustatyta, kad šių junginių fluorescencijos kvantinė išeiga yra gana maža, todėl siekta išsiaiškinti priežastis ir pasiūlyti, kaip būtų galima sustiprinti šių junginių fluorescenciją. Abu junginiai buvo tiriami skirtingos klampos aplinkose pasitelkiant fluorescencinę spektroskopiją su laikine skyra ir ultrasparčiosios trumpalaikės („transient“) sugerties spektroskopiją. Rezultatai parodė, kad vidumolekulinė rotacija yra būtinas procesas nespindulinei molekulių relaksacijai, kuri turi būti sustabdyta norint sukurti stip­riai fluorescuojančias medžiagas.

References / Nuorodos

[1] U. Mitschke and P. Bäuerle, The electroluminescence of organic materials, J. Mater. Chem. 10(7), 1471–1507 (2000),
https://doi.org/10.1039/a908713c
[2] T. Kakinuma, H. Kojima, M. Ashizawa, H. Matsumoto, and T. Mori, Correlation of mobility and molecular packing in organic transistors based on cycloalkyl naphthalene diimides, J. Mater. Chem. C 1(34), 5395–5401 (2013),
https://doi.org/10.1039/c3tc30920g
[3] X. Huang, S. Han, W. Huang, and X. Liu, Enhancing solar cell efficiency: The search for luminescent materials as spectral converters, Chem. Soc. Rev. 42(1), 173–201 (2013),
https://doi.org/10.1039/C2CS35288E
[4] L. Zhu, J. Qin, and C. Yang, Synthesis, photophysical properties, and self-assembly behavior of amphiphilic polyfluorene: Unique dual fluorescence and its application as a fluorescent probe for the mercury ion, J. Phys. Chem. B 114(46), 14884–14889 (2010),
https://doi.org/10.1021/jp1071567
[5] C. Li, M. Numata, M. Takeuchi, and S. Shinkai, A sensitive colorimetric and fluorescent probe based on a polythiophene derivative for the detection of ATP, Angew. Chem. Int. Ed. 44(39), 6371–6374 (2005),
https://doi.org/10.1002/anie.200501823
[6] C.E. Sroog, Polyimides, J. Polym. Sci. Macromol. Rev. 11(1), 161–208 (1976),
https://doi.org/10.1002/pol.1976.230110105
[7] T. Matsuura, S. Ando, S. Sasaki, and F. Yamamoto, Polyimides derived from 2,2′-bis(tri fluoromethyl)-4,4′-diaminobiphenyl. 4. Optical properties of fluorinated polyimides for optoelectronic components, Macromolecules 27(22), 6665–6670 (1994),
https://doi.org/10.1021/ma00100a061
[8] G. Arjavalingam, G. Hougham, and J.P. LaFemina, Emission mechanism in polyimide, Polymer 31(5), 840–844 (1990),
https://doi.org/10.1016/0032-3861(90)90044-Y
[9] R. Karmakar and A. Samanta, Phase-transfer catalyst-induced changes in the absorption and fluorescence behavior of some electron donor–acceptor molecules, J. Am. Chem. Soc. 123(16), 3809–3817 (2001),
https://doi.org/10.1021/ja004131b
[10] T. Soujanya, R.W. Fessenden, and A. Samanta, Role of nonfluorescent twisted intramolecular charge transfer state on the photophysical behavior of aminophthalimide dyes, J. Phys. Chem. 100(9), 3507–3512 (1996),
https://doi.org/10.1021/jp9526509
[11] R. Orita, M. Franckevičius, A. Vyšniauskas, V. Gulbinas, H. Sugiyama, H. Uekusa, K. Kanosue, R. Ishige, and S. Ando, Enhanced fluorescence of phthalimide compounds induced by the incorporation of electron-donating alicyclic amino groups, Phys. Chem. Chem. Phys. 20(23), 16033–16044 (2018),
https://doi.org/10.1039/C8CP01999A
[12] M.A. Haidekker, M. Nipper, A. Mustafic, D. Lichlyter, M. Dakanali, and E.A. Theodorakis, Dyes with segmental mobility: Molecular rotors, in: Advanced Fluorescence Reporters in Chemistry and Biology I, Springer Series on Fluorescence (Springer Berlin Heidelberg, 2010) pp. 267–308,
https://doi.org/10.1007/978-3-642-04702-2_8
[13] M.A. Haidekker, T. Ling, M. Anglo, H.Y. Stevens, J.A. Frangos, and E.A. Theodorakis, New fluorescent probes for the measurement of cell membrane viscosity, Chem. Biol. 8(2), 123–131 (2001),
https://doi.org/10.1016/S1074-5521(00)90061-9
[14] A. Vyšniauskas and M.K. Kuimova, A twisted tale: measuring viscosity and temperature of microenvironments using molecular rotors, Int. Rev. Phys. Chem. 37(2), 259–285 (2018),
https://doi.org/10.1080/0144235X.2018.1510461
[15] J.J. Snellenburg, S.P. Laptenok, R. Seger, K.M. Mullen, and I.H.M. van Stokkum, Glotaran: A Java-based graphical user interface for the R package TIMP, J. Stat. Softw. 49(3), 1–2 (2012),
https://doi.org/10.18637/jss.v049.i03