[PDF]  https://doi.org/10.3952/physics.v59i3.4079

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 59, 130–138 (2019)
 


CP MAS KINETICS AND IMPEDANCE SPECTROSCOPY STUDIES OF LOCAL DISORDER IN LOW-DIMENSIONAL H-BONDED PROTON-CONDUCTING MATERIALS
 
Laurynas Dagysa,b, Sergejus Balčiūnasc, Jūras Banysc, Feliksas Kuliešiusa, Vladimir Chizhikd, and Vytautas Balevičiusa
 aInstitute of Chemical Physics, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
bDepartment of Chemistry, University of Southampton, University Road, SO17 1BJ Southampton, UK
cInstitute of Applied Electrodynamics and Telecommunications, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
dFaculty of Physics, Saint Petersburg State University, Ulianovskaya 1, 198504 Saint Petersburg, Russia
Email: vytautas.balevicius@ff.vu.lt

Received 29 May 2019; revised 3 June 2019; accepted 25 June 2019

The 1H–13C cross-polarization magic angle spinning (CP MAS) kinetics was studied in poly(vinyl phosphonic acid) (pVPA), i.e. material with high degrees of freedom of proton motion along H-bonded chains. It has been shown that the CP kinetic data for the adjacent 1H–13C spin pairs can be described in the frame of the isotropic spin-diffusion approach. The rates of spin diffusion and spin-lattice relaxation as well as the parameters accounting for spin coupling and the effective size of spin clusters have been determined. The local order parameter S ≈ 0.63±0.02, determined as the ratio of the measured dipolar 1H–13C coupling constant and the calculated static dipolar coupling constant, is significantly lower than the values deduced for related sites in other polymers and in series of amino acids. This means that the local disorder of the C–H bonds in pVPA is between those for rather rigid C–H bond configurations having S = 0.8–1.0 and highly disordered –CH3 groups (S ~ 0.4). This effect can be attributed to the presence of the proton transfer path where proton motion is easy to activate. The activation energy for the proton motion Ea = 59±7 kJ/mol was determined from the impedance spectroscopy data analysing the temperature and frequency dependences of the complex dielectric permittivity of pVPA. The rates of proton spin-lattice relaxation and spin diffusion are of the same order and both run in the time scale of milliseconds.
Keywords: solid state NMR, cross-polarization, impedance spectroscopy, proton conductors, poly(vinyl phosphonic acid)
PACS: 33.25.+k, 82.56.-b


LOKALIOSIOS NETVARKOS ŽEMOS DIMENSIJOS H-RYŠIO PROTONŲ LAIDININKUOSE TYRIMAI CP MAS KINETIKOS IR IMPEDANSO SPEKTROMETRIJOS METODAIS

Laurynas Dagysa,b, Sergejus Balčiūnasc, Jūras Banysc, Feliksas Kuliešiusa, Vladimir Chizhikd, Vytautas Balevičiusa

aVilniaus universiteto Cheminės fizikos institutas, Vilnius, Lietuva
bSoutamptono universiteto Chemijos katedra, Soutamptonas, Jungtinė Karalystė
cVilniaus universiteto Taikomosios elektrodinamikos ir telekomunikacijų institutas, Vilnius, Lietuva
dSankt Peterburgo valstybinio universiteto Fizikos fakultetas, Sankt Peterburgas, Rusija
 
Ištirta 1H–13C CP (kryžminės poliarizacijos) MAS (magiško kampo sukimo) kinetika, vykstanti poli(vinyl fosfoninėje rūgštyje) (pVPA), t. y. medžiagoje, kuriai būdingas didelis protonų judėjimo išilgai vandenilinių ryšių (H-ryšių) grandinės laisvės laipsnių skaičius. Dėl šios savybės pVPA priskiriama medžiagų klasei, vadinamajai protonų laidininkei. Parodyta, kad šioje medžiagoje vykstančios CP MAS kinetikos eksperimentiniai duomenys gali būti aprašyti taikant izotropinės sukinių difuzijos modelį. Nustatytos sukinių difuzijos bei sukinių ir gardelės relaksacijų spartos, taip pat parametrai, nusakantys 1H ir 13C sukinių sąveiką ir efektyviuosius sukinių spiečių matmenis. Lokaliosios tvarkos parametras S ≈ 0,63±0,02, apskaičiuotas remiantis eksperimentiškai išmatuotos dipolinės 1H–13C sąveikos konstantos ir apskaičiuotosios statinės konstantos vertėmis, yra daug mažesnis už S vertes, kurios aptinkamos daugelyje giminingų molekuliniams fragmentams polimerų ir amino rūgščių serijose. Lokalioji C–H jungčių netvarka pVPA užima tarpinę padėtį tarp stingiųjų C–H konfigūracijų, kurioms yra būdingos S vertės, artimos 1,0 (S = 0,8–1,0), ir metilo (–CH3) grupių, kurių didelė netvarka (S ∼ 0,4) atsiranda dėl lengvai aktyvuojamo šių grupių sukimosi. Galima teigti, kad nemažas C–H jungčių tvarkos parametro sumažėjimas yra nulemtas intensyvaus rūgštinių protonų judėjimo išilgai H-ryšių grandinės. Impedanso spektroskopijos metodu nustatyta šio judesio aktyvavimo energija yra Ea = 59±7 kJ/mol. Sukinių difuzijos bei sukinių ir gardelės relaksacijos spartos tirtajame polimere yra tos pačios eilės, ir šie vyksmai prateka milisekundžių skalėje.

References / Nuorodos


[1] J. Raya and J. Hirschinger, Sensitivity enhancement by multiple-contact cross-polarization under magic-angle spinning, J. Magn. Reson. 281, 253–271 (2017),
https://doi.org/10.1016/j.jmr.2017.06.011
[2] E.O. Stejskal, J. Schaefer, and J.S. Waugh, Magic-angle spinning and polarization transfer in proton-enhanced NMR, J. Magn. Reson. 28, 105–112 (1977),
https://doi.org/10.1016/0022-2364(77)90260-8
[3] E.O. Stejskal and J.D. Memory, High Resolution NMR in the Solid State: Fundamentals of CP/MAS (Oxford University Press, New York, 1994),
https://www.amazon.co.uk/High-Resolution-NMR-Solid-State/dp/0195073800/
[4] W. Kolodziejski and J. Klinowski, Kinetics of cross-polarization in solid-state NMR: A guide for chemists, Chem. Rev. 102, 613–628 (2002),
https://doi.org/10.1021/cr000060n
[5] V. Klimavicius, L. Dagys, and V. Balevicius, Subnanoscale order and spin diffusion in complex solids through the processing of cross-polarization kinetics, J. Phys. Chem. C 120, 3542–3549 (2016),
https://doi.org/10.1021/acs.jpcc.5b11739
[6] L. Dagys, V. Klimavicius, and V. Balevicius, Processing of CP MAS kinetics: Towards NMR crystallography for complex solids, J. Chem. Phys. 145, 114202 (2016),
https://doi.org/10.1063/1.4962579
[7] V. Klimavicius, L. Dagys, V. Chizhik, and V. Balevicius, CP MAS kinetics study of ionic liquids confined in mesoporous silica: Convergence of non-classical and classical spin coupling models, Appl. Magn. Reson. 48, 673–685 (2017),
https://doi.org/10.1007/s00723-017-0891-z
[8] L. Dagys, V. Klimavicius, T. Gutmann, G. Buntkowsky, and V. Balevicius, Quasi-equilibria and polarization transfer between adjacent and remote spins: 1H-13C CP MAS kinetics in glycine, J. Phys. Chem. A 122, 8938–8947 (2018),
https://doi.org/10.1021/acs.jpca.8b09036
[9] S. Asami and B. Reif, Comparative Study of REDOR and CPPI derived order parameters by 1H-detected MAS NMR and MD simulations, J. Phys. Chem. B 121, 8719–8730 (2017),
https://doi.org/10.1021/acs.jpcb.7b06812
[10] Y.J. Lee, B. Bingöl, T. Murakhtina, D. Sebastiani, W.H. Meyer, G. Wegner, and H.W. Spiess, High-resolution solid-state NMR studies of poly(vinyl phosphonic acid) proton-conducting polymer: Molecular structure and proton dynamics, J. Phys. Chem. B 111, 9711–9721 (2007),
https://doi.org/10.1021/jp072112j
[11] F. Jiang, H. Zhu, R. Graf, W.H. Meyer, H.W. Spiess, and G. Wegner, Phase behaviour and proton conduction in poly(vinylphosphonic acid)/poly(ethylene oxide) blends, Macromolecules 43, 3876–3881 (2010),
https://doi.org/10.1021/ma100168g
[12] L. Müller, A. Kumar, T. Baumann, and R.R. Ernst, Transient oscillations in NMR cross-polarization experiments in solids, Phys. Rev. Lett. 32, 1402–1406 (1974),
https://doi.org/10.1103/PhysRevLett.32.1402
[13] A. Naito and C.A. McDowell, Anisotropic behaviour of the 13C nuclear spin dynamics in a single crystal of l-alanine, J. Chem. Phys. 84, 4181–4186 (1986),
https://doi.org/10.1063/1.450038
[14] S. Hediger, Improvement of Heteronuclear Polarization Transfer in Solid-State NMR, Ph. D. Thesis (ETH-Zürich, 1997)
[15] V. Klimavicius, A. Kareiva, and V. Balevicius, Solid-state NMR study of hydroxyapatite containing amorphous phosphate phase and nanostructured hydroxyapatite: Cut-off averaging of CP MAS kinetics and size profiles of spin clusters, J. Phys. Chem. C 118, 28914–28921 (2014),
https://doi.org/10.1021/jp510229f
[16] A.G. Palmer III, J. Williams, and A. McDermott, Nuclear magnetic resonance studies of biopolymer dynamics, J. Phys. Chem. 100, 13293–13310 (1996),
https://doi.org/10.1021/jp9606117
[17] K. Saalwächter and H.W. Spiess, in: Polymer Science: A Comprehensive Reference, Vol. 2, eds. K. Matyjaszewski and M. Möller (Elsevier Science, 2012) pp. 185–219,
https://doi.org/10.1016/B978-0-444-53349-4.00025-X
[18] M. Koval'aková, O. Fričová, M. Hutníková, V. Hronský, and D. Olčák, Dynamics of 1H-13C cross polarization in nuclear magnetic resonance of poly(3-hydroxybutyrate), Acta Phys. Pol. A 131, 1162–1164 (2017),
https://doi.org/10.12693/APhysPolA.131.1162
[19] J.L. Lorieau and A.E. McDermott, Conformational flexibility of a microcrystalline globular protein: Order parameters by solid-state NMR spectroscopy, J. Am. Chem. Soc. 128, 11505–11512 (2006),
https://doi.org/10.1021/ja062443u
[20] J.L. Lorieau and A.E. McDermott, Order parameters based on 13C1H, 13C1H2 and 13C1H3 heteronuclear dipolar powder patterns: A comparison of MAS-based solid-state NMR sequences, Magn. Reson. Chem. 44, 334–347 (2006),
https://doi.org/10.1002/mrc.1773
[21] M. Wang, M. Bertmer, D.E. Demco, and B. Blümich, Segmental and local chain mobilities in elastomers by 13C-1H residual heteronuclear dipolar couplings, J. Phys. Chem. B 108, 10911–10918 (2004),
https://doi.org/10.1021/jp048392+
[22] L. Dagys, V. Klimkevičius, V. Klimavicius, K. Aidas, R. Makuška, and V. Balevicius, CP MAS kinetics in soft matter: spin diffusion, local disorder and thermal equilibration in poly(2-hydroxyethyl methacrylate) [to be published]
[23] D. Sakellariou, P. Hodgkinson, S. Hediger, and L. Emsley, Experimental observation of periodic quasi equilibria in solid-state NMR, Chem. Phys. Lett. 308, 381–389 (1999),
https://doi.org/10.1016/S0009-2614(99)00648-X