[PDF]  https://doi.org/10.3952/physics.v60i1.4163

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 60, 48–56 (2020)
 


ESTIMATION OF THE CHARGED DEFECT DENSITY FROM HOT-ELECTRON TRANSPORT STUDIES IN EPITAXIAL ZnO
  Linas Ardaravičius, Oleg Kiprijanovič, Mindaugas Ramonas, Emilis Šermukšnis, Artur Šimukovič, and Arvydas Matulionis
Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: linas.ardaravicius@ftmc.lt

Received 20 May 2019; revised 11 July 2019; accepted 25 November 2019

High-field electron transport measurements by applying short (few ns) voltage pulses on nominally undoped n-type Zn-polar ZnO epilayers are reported and interpreted in terms of the Boltzmann kinetic equation. The transient measurements do not demonstrate a significant change in the electron density up to 320 kV/cm electric field. This result together with the experimental data on the current allows one to estimate the electron drift velocity from the measured current: the highest value of ~2.9 × 107 cm/s is obtained at the pre-breakdown field of 320 kV/cm for the ZnO layer with the electron density of 1.5 × 1017 cm–3. The densities of double-charged oxygen vacancies (~1.6 × 1017 cm–3) and other charged centres (~1.7 × 1017 cm–3) are assumed for the best fit of the simulated and measured hot-electron effect. A correlation with the epilayer growth conditions is demonstrated: the higher Zn cell temperature favours the formation of a higher density of the oxygen vacancies (1.9 × 1017 cm–3 at 347°C).
Keywords: ZnO epilayer, charged defects, differential mobility, electron drift velocity, high electric fields


ĮELEKTRINTŲ DEFEKTŲ TANKIO ĮVERTINIMAS NAUDOJANT KARŠTŲJŲ ELEKTRONŲ PERNAŠOS TYRIMUS EPITAKSINIAME ZnO

  Linas Ardaravičius, Oleg Kiprijanovič, Mindaugas Ramonas, Emilis Šermukšnis, Artur Šimukovič, Arvydas Matulionis

Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
 
Naudojant nanosekundinių įtampos impulsų matavimo metodiką ištirta karštųjų elektronų pernaša kambario temperatūroje nominaliai nelegiruotuose ZnO epitaksiniuose sluoksniuose. Bolcmano kinetinė lygtis išspręsta sferinių harmonikų metodu siekiant atsižvelgti į karštųjų elektronų efektus. Naudojant šiuos metodus įvertintas įelektrintų taškinių defektų tankis (vakansijų 1,6–1,9 × 1017 cm–3 ir sočiųjų jungčių 1,7–2,0 × 1017 cm–3), elektronų dreifo judris silpnuose ir vidutiniuose laukuose bei elektronų tankis. Įvertintas deguonies vakansijų tankis koreliuoja su Zn celės auginimo temperatūra. Naudojant trumpus impulsus (3 ns) sumažintas savaiminio pakaitimo efektas ir tirtuose sluoksniuose pasiekiami 430 ± 50 kV/cm elektriniai laukai. Išskiriami du elektrinių laukų ruožai, kuriuose srovės priklausomybė nuo elektrinio lauko stiprio gali būti aproksimuota skirtingio polinkio tiesėmis. Matuojant srovės laiką aiškėja, kad elektronų tankis yra pastovus, kai elektrinio lauko impulsas siekia iki 320 kV/cm. Nuokrypis nuo Omo dėsnio aiškinamas karštųjų elektronų efektais ir elektronų sklaida įkrautais taškiniais defektais bei fononais. Įvertintas didžiausias elektronų dreifo greitis lygus ~2,9 × 107 cm/s, kai elektronų tankis 1,5 × 1017 cm–3 sudarant 320 kV/cm stiprio elektrinį lauką.

References / Nuorodos

[1] D.C. Look, Progress in ZnO materials and devices, J. Electron. Mater. 35, 1299 (2006),
https://doi.org/10.1007/s11664-006-0258-y
[2] C. Klingshirn, ZnO: From basics towards applications, Phys. Status Solidi B 244, 3027 (2007),
https://doi.org/10.1002/pssb.200743072
[3] GaN and ZnO-based Materials and Devices, ed. S. Pearton (Springer-Verlag, Berlin, 2012),
https://doi.org/10.1007/978-3-642-23521-4
[4] J.D. Albrecht, P.P. Ruden, S. Limpijumnong, W.R.L. Lambrecht, and K.F. Brennan, High field electron transport properties of bulk ZnO, J. Appl. Phys. 86, 6864 (1999),
https://doi.org/10.1063/1.371764
[5] K. Koike, I. Nakashima, K. Hashimoto, S. Sasa, M. Inoue, and M. Yano, Characteristics of a Zn0.7Mg0.3O/ZnO heterostructure field-effect transistor grown on sapphire substrate by molecular-beam epitaxy, Appl. Phys. Lett. 87, 112106 (2005),
https://doi.org/10.1063/1.2045558
[6] B. Bayraktaroglu, K. Leedy, and R. Neidhard, High-frequency ZnO thin-film transistors on Si substrates, IEEE Electron Device Lett. 30, 946 (2009),
https://doi.org/10.1109/LED.2009.2025672
[7] H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley-VCH, Weinheim, 2009),
https://doi.org/10.1002/9783527623945
[8] S.K. O'Leary, B.E. Foutz, M.S. Shur, and L.F. Eastman, Steady-state and transient electron transport within bulk wurtzite zinc oxide, Solid State Commun. 150, 2182 (2010),
https://doi.org/10.1016/j.ssc.2010.08.033
[9] E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, and T. Fukuda, Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method, J. Cryst. Growth 260, 166 (2004),
https://doi.org/10.1016/j.jcrysgro.2003.08.019
[10] Y. Li, G.S. Tompa, S. Liang, C. Gorla, Y. Lu, and J. Doyle, Transparent and conductive Ga-doped ZnO films grown by low pressure metal organic chemical vapor deposition, J. Vac. Sci. Technol. A 15, 1063 (1997),
https://doi.org/10.1116/1.580430
[11] W. Yang, R.D. Vispute, S. Choopun, R.P. Sharma, T. Venkatesan, and H. Shen, Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films, Appl. Phys. Lett. 78, 2787 (2001),
https://doi.org/10.1063/1.1368378
[12] S.O. Kucheyev, C. Jagadish, J.S. Williams, P.N.K. Deenapanray, M. Yano, K. Koike, S. Sasa, M. Inoue, and K. Ogata, Implant isolation of ZnO, J. Appl. Phys. 93, 2972 (2003),
https://doi.org/10.1063/1.1542939
[13] D.G. Thomas, The exciton spectrum of zinc oxide, J. Phys. Chem. Solids 15, 86 (1960),
https://doi.org/10.1016/0022-3697(60)90104-9
[14] L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov, Q.-K. Xue, and X. Du, Oxygen vacancies: The origin of n-type conductivity in ZnO, Phys. Rev. B 93, 235305 (2016),
https://doi.org/10.1103/PhysRevB.93.235305
[15] K.I. Hagemark and P.E. Toren, Determination of excess Zn in ZnO. The phase boundary ZnZn1+xO, J. Electrochem. Soc. 122, 992 (1975),
https://doi.org/10.1149/1.2134384
[16] L.E. Halliburton, N.C. Giles, N.Y. Garces, M. Luo, C. Xu, L. Bai, and L.A. Boatner, Production of native donors in ZnO by annealing at high temperature in Zn vapor, Appl. Phys. Lett. 87, 172108 (2005),
https://doi.org/10.1063/1.2117630
[17] L.S. Vlasenko and G.D. Watkins, Optical detection of electron paramagnetic resonance in room-temperature electron-irradiated ZnO, Phys. Rev. B 71, 125210 (2005),
https://doi.org/10.1103/PhysRevB.71.125210
[18] F. Tuomisto, K. Saarinen, K. Grasza, and A. Mycielski, Observation of Zn vacancies in ZnO grown by chemical vapor transport, Phys. Status Solidi B 243, 794 (2006),
https://doi.org/10.1002/pssb.200564658
[19] A. Janotti and C.G. Van de Walle, Oxygen vacancies in ZnO, Appl. Phys. Lett. 87, 122102 (2005),
https://doi.org/10.1063/1.2053360
[20] A. Tsukazaki, A. Ohtomo, and M. Kawasaki, High-mobility electronic transport in ZnO thin films, Appl. Phys. Lett. 88, 152106 (2006),
https://doi.org/10.1063/1.2193727
[21] Y. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, A.B. Yankovich, A.V. Kvit, P.M. Voyles, and H. Morkoç, Electron scattering mechanisms in GZO films grown on a-sapphire substrates by plasma-enhanced molecular beam epitaxy, J. Appl. Phys. 111, 103713 (2012),
https://doi.org/10.1063/1.4720456
[22] W.A. Hadi, M.S. Shur, and S.K. O'Leary, The sensitivity of the steady-state and transient electron transport within bulk wurtzite zinc oxide to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient, J. Mater. Sci. Mater. Electron. 24, 2 (2013),
https://doi.org/10.1007/s10854-012-0782-x
[23] E. Furno, F. Bertazzi, M. Goano, G. Ghione, and E. Bellotti, Hydrodynamic transport parameters of wurtzite ZnO from analytic- and full-band Monte Carlo simulation, Solid State Electron. 52, 1796 (2008),
https://doi.org/10.1016/j.sse.2008.08.001
[24] W.A. Hadi, M.S. Shur, and S.K. O'Leary, A transient electron transport analysis of bulk wurtzite zinc oxide, J. Appl. Phys. 112, 033720 (2012),
https://doi.org/10.1063/1.4745027
[25] S. Sasa, T. Maitani, Y. Furuya, T. Amano, K. Koike, M. Yano, and M. Inoue, Microwave performance of ZnO/ZnMgO heterostructure field effect transistors, Phys. Status Solidi A 208, 449 (2011),
https://doi.org/10.1002/pssa.201000509
[26] L. Ardaravičius, O. Kiprijanovič, J. Liberis, M. Ramonas, E. Šermukšnis, A. Matulionis, M. Toporkov, V. Avrutin, Ü. Özgür, and H. Morkoç, High-field electron transport in doped ZnO, Mater. Res. Express 4, 066301 (2017),
https://doi.org/10.1088/2053-1591/aa744b
[27] L. Ardaravičius, O. Kiprijanovič, M. Ramonas, E. Šermukšnis, J. Liberis, A. Šimukovič, A. Matulionis, K. Ding, Md.B. Ullah, V. Avrutin, Ü. Özgür, and H. Morkoç, Electron drift velocity in wurtzite ZnO at high electric fields: experiment and simulation, J. Appl. Phys. 126, 185703 (2019),
https://doi.org/10.1063/1.5100078
[28] M. Ramonas and C. Jungemann, A deterministic approach to noise in a non-equilibrium electron-phonon system based on the Boltzmann equation, J. Comput. Electron. 14, 43 (2015),
https://doi.org/10.1007/s10825-014-0627-3
[29] L. Ardaravičius, M. Ramonas, J. Liberis, O. Kiprijanovič, A. Matulionis, J. Xie, M. Wu, J. H. Leach, and H. Morkoç, Electron drift velocity in lattice-matched AlInN/AlN/GaN channel at high electric fields, J. Appl. Phys. 106, 073708 (2009),
https://doi.org/10.1063/1.3236569
[30] L. Ardaravičius, O. Kiprijanovič, J. Liberis, A. Matulionis, E. Šermukšnis, R.A. Ferreyra, V. Avrutin, Ü. Özgür, and H. Morkoç, Threshold field for soft damage and electron drift velocity in InGaN two-dimensional channels, Semicond. Sci. Technol. 30, 105016 (2015),
https://doi.org/10.1088/0268-1242/30/10/105016
[31] L. Ardaravičius, A. Matulionis, J. Liberis, O. Kiprijanovič, M. Ramonas, L.F. Eastman, J.R. Shealy, and A. Vertiatchikh, Electron drift velocity in AlGaN/GaN channel at high electric fields, Appl. Phys. Lett. 83, 4038 (2003),
https://doi.org/10.1063/1.1626258