[PDF]  https://doi.org/10.3952/physics.v60i2.4224

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 60, 91–95 (2020)
 

27Al MAS NMR SPECTROSCOPY STUDY OF Eu2+-DOPED AND Dy3+-CO-DOPED SrAl4O7
 
Martynas Misevičiusa,b, Laurynas Dagysc, Arūnas Maršalkaa, Kristina Kristinaitytėa, and Vytautas Balevičiusa
  a Institute of Chemical Physics, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
b Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
c Department of Chemistry, University of Southampton, SO17 1BJ, Southampton, UK
Email: vytautas.balevicius@ff.vu.lt

Received 6 December 2019; accepted 16 December 2019

The Eu2+-doped strontium aluminate SrAl4O7 samples have shown the blue-green persistent luminescence at 490 nm while the co-doping with Dy3+ shifts the maximum of emission to 475 nm. Undoped, 3% Eu-doped and 6% Dy-co-doped SrAl4O7 samples were prepared by the solid state-reaction method and studied by the solid-state 27Al MAS NMR applying the single pulse-acquire and Hahn-echo pulse sequences. It was shown that the Eu2+ with Dy3+ ion doping did not affect the bulk structure as well as the local Al environment in SrAl4O7. This means that large shifts of the emission maximum cannot be caused by changes in the local environment upon the co-doping of SrAl4O7:Eu2+ with Dy3+. However, the spectral features observed in the range between the signals of 4- and 6-coordinated Al (20–40 ppm) indicate that certain phase imperfections are present in all studied samples, and most probably amorphous/glassy domains were formed. Note that such amount of phase impurities was not detected by standard XRD or FTIR methods. This has revealed the 27Al MAS NMR technique to be a very effective tool monitoring the phase perfectness in series of strontium aluminate samples.
Keywords: solid-state NMR, magic-angle spinning, strontium aluminate, europium, dysprosium
PACS: 61.72.Hh, 76.60-k, 82.56.-b

Eu2+ LEGIRUOTŲ IR Dy3+ KOLEGIRUOTŲ SrAl4O7 TYRIMAI 27Al MAS BMR SPEKTROMETRIJOS METODU
Martynas Misevičiusa,b, Laurynas Dagysc, Arūnas Maršalkaa, Kristina Kristinaitytėa, Vytautas Balevičiusa

a Vilniaus universiteto Cheminės fizikos institutas, Vilnius, Lietuva
b Vilniaus universiteto Chemijos institutas, Vilnius, Lietuva
c Sautamptono universiteto Chemijos katedra, Sautamptonas, Jungtinė Karalystė

Eu2+ legiruoti stroncio aliuminatai SrAl4O7 pasižymi mėlynai žalia išliekančiąja liuminescencija ties 490 nm, o juos kolegiravus Dy3+ jonais emisijos maksimumas pasislenka link 475 nm. Kietafazių reakcijų metodu buvo paruošti nelegiruoti, 3 % Eu legiruoti ir 6 % Dy kolegiruoti SrAl4O7 mėginiai, kurie ištirti taikant kietojo kūno 27Al MAS („magiško kampo sukimo“) BMR spektrometrijos metodą. Naudotos pavienio impulso ir Hahno sukinių aido impulsų sekos. Nustatyta, kad SrAl4O7 legiravimas Eu2+ ir Dy3+ jonais neturi įtakos kristalinei struktūrai visame bandinio tūryje bei lokaliai Al atomų aplinkai. Tai reiškia, kad toks pastebimas emisijos maksimumo poslinkis SrAl4O7:Eu2+ kolegiruojant Dy3+ nėra nulemtas lokalios kristalinės struktūros pokyčių. Kita vertus, BMR spektro dalis, stebima tarp keturių ir šešių koordinuotų Al signalų (20–40 m.d.), parodo, kad šiuose bandiniuose yra kitų fazių priemaišų, ir, labiausiai tikėtina, amorfinių / stikliškų domenų. Pažymėtina, kad tokie maži fazinių priemaišų kiekiai nebuvo aptikti įprastais ir bene dažniausiai šiam tikslui pasiekti taikomais rentgeno difrakcijos (XRD) bei Furjė vaizdavimo infraraudonosios spektrometrijos (FTIR) metodais. Tai rodo, kad 27Al MAS BMR metodas gali būti labai efektyvus įrankis kontroliuojant stroncio aliuminatų serijos junginių fazinį grynumą.
 
References / Nuorodos

[1] M. Capron, F. Fayon, D. Massiot, and A. Douy, Sr4Al14O25: Formation, stability, and 27Al high-resolution NMR characterization, Chem. Mater. 15, 575–579 (2003),
https://doi.org/10.1021/cm0213265
[2] D.A. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, Eu2+ luminescence in strontium aluminates, Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015), 150
https://doi.org/10.1039/C5CP01095K
[3] C.R. Ronda (ed.), Luminescence: From Theory to Applications (Wiley-VCH, Weinheim, 2008),
https://doi.org/10.1002/9783527621064
[4] A. Nag and T.R.N. Kutty, Role of B2O3 on the phase stability and long phosphorescence of SrAl2O4: Eu, Dy, J. Alloys Compd. 354, 221–231 (2003),
https://doi.org/10.1016/S0925-8388(03)00009-4
[5] F. Massazza, The system SrO-Al2O3, Chim. Ind. (Milan) 41, 108–115 (1959)
[6] M. Misevicius, J. Pinkas, and V. Balevicius, Solid-state synthesis and luminescence of europium doped and co-doped with dysprosium SrAl4O7, J. Alloys Compd. (15 April),
https://doi.org/10.1016/j.jallcom.2019.153110
[7] P. Dorenbos, Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds, J. Lumin. 104, 239–260 (2003),
https://doi.org/10.1016/S0022-2313(03)00078-4
[8] K. van den Eeckhout, P.F. Smet, and D. Poelman, Persistent luminescence in Eu2+-doped compounds: A review, Materials 3, 2536–2566 (2010),
https://doi.org/10.3390/ma3042536
[9] M. Paris, L. Choubrac, A. Lafond, C. Guillot-Deudon, and S. Jobic, Solid-state NMR and Raman spectroscopy to address the local structure of defects and the tricky issue of the Cu/Zn disorder in Cu-poor, Zn-rich CZTS materials, Inorg. Chem. 53, 8646–8653 (2014),
https://doi.org/10.1021/ic5012346
[10] A.J. Lindop and D.W. Goodwin, The refined structure of SrO·2Al2O3, Acta Cryst. B 28, 2625–2626 (1972),
https://doi.org/10.1107/S0567740872006612
[11] M.L. Capron and A. Douy, Strontium dialuminate SrAl4O7: Synthesis and stability, J. Am. Ceram. Soc. 85, 3036–3040 (2002),
https://doi.org/10.1111/j.1151-2916.2002.tb00575.x
[12] K.I. Machida, G.Y. Adachi, J. Shiokawa, M. Shimada, and M. Koizumi, Structure of strontium tetraaluminate β-SrAl4O7, Acta Cryst. B 38, 889–891 (1982),
https://doi.org/10.1107/S0567740882004294
[13] M. Karmaoui, M.G. Willinger, L. Mafra, T. Herntrich, and N. Pinna, A general nonaqueous route to crystalline alkaline earth aluminate nanostructures, Nanoscale 1, 360–365 (2009),
https://doi.org/10.1039/b9nr00164f
[14] L. Pavasaryte, A. Katelnikovas, V. Klimavicius, V. Balevicius, A. Krajnc, G. Mali, J. Plavec, and A. Kareiva, Eu3+-doped Y3-xNdxAl3O12 garnet: Synthesis and structural investigation, Phys. Chem. Chem. Phys. 19, 3729–3737 (2017),
https://doi.org/10.1039/C6CP07723D
[15] L. Pavasaryte, A. Katelnikovas, V. Klimavicius, V. Balevicius, A. Momot, M. Van Bael, A. Hardy, and A. Kareiva, Eu3+-doped Y3-xSmxAl5O12 garnet: Synthesis and structural investigation, New J. Chem. 42, 2278–2287 (2018),
https://doi.org/10.1039/C7NJ03468G
[16] L.S. Du and J.F. Stebbins, Calcium and strontium hexaluminates: NMR evidence that 'pentacoordinate' cation sites are four-coordinated, J. Phys. Chem. B 108, 3681–3685 (2004),
https://doi.org/10.1021/jp037615d
[17] S.R. Jansen, H.T. Hintzen, R. Metselaar, J.W. de Haan, L.J.M. van de Ven, A.P.M. Kentgens, and G.H. Nachtegaal, Multiple quantum 27Al magic-angle-spinning nuclear magnetic resonance spectroscopic study of SrAl12O19: Identification of a 27Al resonance from a well-defined AlO5 site, J. Phys. Chem. B 102, 5969–5976 (1998),
https://doi.org/10.1021/jp981224v
[18] S. Alahraché, M. Deschamps, J. Lambert, M.R. Suchomel, D. De Sousa Meneses, G. Matzen, D. Massiot, E. Véron, and M. Allix, Crystallization of Y2O3-Al2O3 rich glasses: Synthesis of YAG glass-ceramics, J. Phys. Chem. C 115, 20499–20506 (2011),
https://doi.org/10.1021/jp207516w
[19] K. Harindranath, K. Anusree Viswanath, C. Vinod Chandran, T. Bräuniger, P.K. Madhu, T.G. Ajithkumar, and P.A. Joy, Evidence for the co-existence of distorted tetrahedral and trigonal bipyramidal aluminum sites in SrAl12O19 from 27Al NMR studies, Solid State Commun. 150, 262–266 (2010),
https://doi.org/10.1016/j.ssc.2009.11.008