[PDF]  https://doi.org/10.3952/physics.v60i2.4226

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 60, 113–124 (2020)
 

DEPOPULATION MECHANISM FOR INCOHERENT TERAHERTZ SOURCE – THz TORCH – BASED ON GaAsBi/GaAs QUANTUM WELL IN GaAs/AlGaAs PARABOLIC QUANTUM WELL
 
Mindaugas Karaliūnasa, Andres Udalb, and Gintaras Valušisa
  a Department of Optoelectronics, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
b Department of Software Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
Email: mindaugas.karaliunas@ftmc.lt

Received 29 November 2019; revised 7 February 2020; accepted 10 February 2020

Parabolic quantum wells (PQWs) are known as a promising candidate for a compact terahertz (THz) source. PQWs have equidistant subbands that can be designed to be separated by few meV to meet the THz frequency range. To enhance the efficiency and power of THz emission from PQWs, a new approach is proposed by employing depopulation of the lowest subbands of PQW. In this work, the theoretical analysis of an incoherent THz torch device is presented. The findings suggest that the introduction of narrower band-gap GaAsBi/GaAs rectangular quantum well within the GaAs/AlGaAs PQW can alter subbands arrangement to enable a faster depopulation mechanism exploiting LO phonon scattering. The calculated radiative power spectra show the increase of oscillator strength between the rearranged subbands of PQW due to the added GaAsBi rectangular potential. The increased intersubband radiative transition probability can lead to an efficient compact incoherent THz source – THz torch.
Keywords: terahertz emission, parabolic quantum well, GaAsBi/GaAs/AlGaAs nanostructures, incoherent THz source
PACS: 03.65.Ge, 73.21.Fg, 78.67.De, 33.20.Ea

DEPOPULIACIJOS MECHANIZMAS NEKOHERENTINIAM TERAHERCŲ ŠALTINIUI – THz ŽIBINTUI, PAGRĮSTAM GaAsBi/GaAs KVANTINE DUOBE PARABOLINĖJE GaAs/AlGaAs KVANTINĖJE DUOBĖJE
Mindaugas Karaliūnasa, Andres Udalb, Gintaras Valušisa

a Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
b Talino technikos universitetas, Talinas, Estija

Parabolinės kvantinės duobės (PKD) yra žinomos kaip tinkama priemonė kompaktiškiems terahercų (THz) šaltiniams. PKD turi vienodais energiniais tarpais pasiskirsčiusias pajuostes, kurios gali būti išdėstytos taip, kad būtų atskirtos kelių meV energiniu atstumu, – tai atitinka THz dažnių ruožą. THz spinduliuotės iš PKD našumui ir galiai padidinti siūlomas naujas būdas išnaudojant žemiausių PKD pajuosčių depopuliaciją. Darbe pateikiama nekoherentinio THz žibinto kaip prietaiso teorinė analizė. Rezultatai rodo, kad siauresnės draustinių energijų juostos GaAsBi / GaAs stačiakampės duobės įterpimas į GaAs / AlGaAs PKD gali pakeisti pajuosčių išsidėstymą taip, kad būtų įjungiamas greitesnis depopuliacijos mechanizmas, paremtas LO fononų sklaida. Suskaičiuoti spindulinės galios spektrai atskleidžia osciliatoriaus stiprio padidėjimą tarp dėl pridėto GaAsBi stačiakampio potencialo persiskirsčiusių PKD pajuosčių. Išaugusi tarppajuostinio spindulinio šuolio tikimybė gali tapti našaus, kompaktiško, nekoherentinio THz šaltinio – THz žibinto – veikimo pagrindu.
 
References / Nuorodos

[1] M. Karaliūnas, V. Jakštas, K.E. Nasser, R. Venckevičius, A. Urbanowicz, I. Kašalynas, and G. Valušis, Application of terahertz spectroscopy for characterization of biologically active organic molecules in natural environment, Proc. SPIE 9934, 99340P (2016),
https://doi.org/10.1117/12.2238242
[2] M. Karaliūnas, K.E. Nasser, A. Urbanowicz, I. Kašalynas, D. Bražinskienė, S. Asadauskas, and G. Valušis, Non-destructive inspection of food and technical oils by terahertz spectroscopy, Sci. Rep. 8, 18025 (2018),
https://doi.org/10.1038/s41598-018-36151-3
[3] U. Puc, A. Abina, A. Jeglič, A. Zidanšek, I. Kašalynas, R. Venckevičius, and G. Valušis, Spectroscopic analysis of melatonin in the terahertz frequency range, Sensors 18(12), 4098 (2018),
https://doi.org/10.3390/s18124098
[4] Q. Sun, Y. He, K. Liu, S. Fan, E.P.J. Parrott, and E. Pickwell-MacPherson, Recent advances in terahertz technology for biomedical applications, Quant. Imaging Med. Surg. 7(3), 345–355 (2017),
https://doi.org/10.21037/qims.2017.06.02
[5] J.-H. Son, S.J. Oh, and H. Cheon, Potential clinical applications of terahertz radiation, J. Appl. Phys. 125(19), 190901 (2019),
https://doi.org/10.1063/1.5080205
[6] I. Kašalynas, D. Seliuta, R. Simniškis, V. Tamošiūnas, K. Köhler, and G. Valušis, Terahertz imaging with bow-tie InGaAs-based diode with broken symmetry, Electron. Lett. 45, 833–835 (2009),
https://doi.org/10.1049/el.2009.0336
[7] I. Kasalynas, R. Venckevicius, and G. Valusis, Continuous wave spectroscopic terahertz imaging with InGaAs bow-tie diodes at room temperature, IEEE Sens. J. 13(1), 50–54 (2013),
https://doi.org/10.1109/JSEN.2012.2223459
[8] F. Wahaia, G. Valusis, L.M. Bernardo, A. Almeida, J.A. Moreira, P.C. Lopes, J. Macutkevic, I. Kasalynas, D. Seliuta, R. Adomavicius, R. Henrique, and M. Lopes, Detection of colon cancer by terahertz techniques, J. Mol. Struct. 1006(1–3), 77–82 (2011),
https://doi.org/10.1016/j.molstruc.2011.05.049
[9] I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues, Sensors 16(4), 432 (2016),
https://doi.org/10.3390/s16040432
[10] O. Mitrofanov, I. Brener, T.S. Luk, and J.L. Reno, Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity, ACS Photonics 2(12), 1763–1768 (2015),
https://doi.org/10.1021/acsphotonics.5b00475
[11] T. Kiwa, T. Kamiya, T. Morimoto, K. Fujiwara, Y. Maeno, Y. Akiwa, M. Iida, T. Kuroda, K. Sakai, H. Nose, M. Kobayashi, and K. Tsukada, Imaging of chemical reactions using a terahertz chemical microscope, Photonics 6(1), 10 (2019),
https://doi.org/10.3390/photonics6010010
[12] M. Tamošiūnaitė, V. Tamošiūnas, and G. Valušis, Wireless communications beyond 5G: Uncertainties of terahertz wave attenuation due to rain, Lith. J. Phys. 58(2), 149 (2018),
https://doi.org/10.3952/physics.v58i2.3744
[13] I. Kašalynas, R. Venckevičius, D. Seliuta, I. Grigelionis, and G. Valušis, InGaAs-based bow-tie diode for spectroscopic terahertz imaging, J. Appl. Phys. 110(11), 114505 (2011),
https://doi.org/10.1063/1.3658017
[14] V. Jakštas, J. Jorudas, V. Janonis, L. Minkevičius, I. Kašalynas, P. Prystawko, and M. Leszczynski, Development of AlGaN/GaN/SiC high-electron-mobility transistors for THz detection, Lith. J. Phys. 58(2), 188 (2018),
https://doi.org/10.3952/physics.v58i2.3748
[15] L. Minkevičius, V. Tamošiunas, K. Madeikis, B. Voisiat, I. Kašalynas, and G. Valušis, On-chip integration of laser-ablated zone plates for detection enhancement of InGaAs bow-tie terahertz detectors, Electron. Lett. 50(19), 1367 (2014),
https://doi.org/10.1049/el.2014.1893
[16] L. Minkevičius, S. Indrišiūnas, R. Šniaukas, B. Voisiat, V. Janonis, V. Tamošiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, Terahertz multilevel phase Fresnel lenses fabricated by laser patterning of silicon, Opt. Lett. 42(10), 1875 (2017),
https://doi.org/10.1364/OL.42.001875
[17] D. Jokubauskis, L. Minkevičius, M. Karaliūnas, S. Indrišiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, Fibonacci terahertz imaging by silicon diffractive optics, Opt. Lett. 43(12), 2795 (2018),
https://doi.org/10.1364/OL.43.002795
[18] D. Glaab, S. Boppel, A. Lisauskas, U. Pfeiffer, E. Öjefors, and H.G. Roskos, Terahertz heterodyne detection with silicon field-effect transistors, Appl. Phys. Lett. 96(4), 042106 (2010),
https://doi.org/10.1063/1.3292016
[19] L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H.G. Roskos, and K. Köhler, Terahertz heterodyne imaging with InGaAs-based bow-tie diodes, Appl. Phys. Lett. 99(13), 131101 (2011),
https://doi.org/10.1063/1.3641907
[20] D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas, and G. Valušis, Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects, Opt. Eng. 58(2), 023104 (2019),
https://doi.org/10.1117/1.OE.58.2.023104
[21] W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Łusakowski, M. Sakowicz, et al., Field effect transistors for terahertz detection and emission, J. Infrared Millim. Terahertz Waves 32(5), 618628 (2011),
https://doi.org/10.1007/s10762-010-9647-7
[22] V. Jakštas, I. Grigelionis, V. Janonis, G. Valušis, I. Kašalynas, G. Seniutinas, S. Juodkazis, P. Prystawko, and M. Leszczyński, Electrically driven terahertz radiation of 2DEG plasmons in AlGaN/GaN structures at 110 K temperature, Appl. Phys. Lett. 110(20), 202101 (2017),
https://doi.org/10.1063/1.4983286
[23] R.C. Miller, A.C. Gossard, D.A. Kleinman, and O. Munteanu, Parabolic quantum wells with the GaAs-AlxGa1-xAs system, Phys. Rev. B 29, 3740 (1984),
https://doi.org/10.1103/PhysRevB.29.3740
[24] J. Ulrich, R. Zobl, K. Unterrainer, G. Strasser, E. Gornik, K.D. Maranowski, and A.C. Gossard, Temperature dependence of far-infrared electroluminescence in parabolic quantum wells, Appl. Phys. Lett. 74(21), 3158 (1999),
https://doi.org/10.1063/1.124091
[25] R. Bratschitsch, T. Müller, R. Kersting, G. Strasser, and K. Unterrainer, Coherent terahertz emission from optically pumped intersubband plasmons in parabolic quantum wells, Appl. Phys. Lett. 76(24), 3501 (2000),
https://doi.org/10.1063/1.126687
[26] H. Dakhlaoui, Tunability of the optical absorption and refractive index changes in step-like and parabolic quantum wells under external electric field, Optik 168, 416 (2018),
https://doi.org/10.1016/j.ijleo.2018.04.109
[27] M. Geiser, C. Walther, G. Scalari, M. Beck, M. Fischer, L. Nevou, and J. Faist, Strong light-matter coupling at terahertz frequencies at room temperature in electronic LC resonators, Appl. Phys. Lett. 97(19), 191107 (2010),
https://doi.org/10.1063/1.3511446
[28] M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells, Phys. Rev. Lett. 108, 106402 (2012),
https://doi.org/10.1103/PhysRevLett.108.106402
[29] A. Tzimis, A.V. Trifonov, G. Christmann, S.I. Tsintzos, Z. Hatzopoulos, I.V. Ignatiev, A.V. Kavokin, and P.G. Savvidis, Strong coupling and stimulated emission in single parabolic quantum well microcavity for terahertz cascade, Appl. Phys. Lett. 107(10), 101101 (2015),
https://doi.org/10.1063/1.4930165
[30] B. Paulillo, J.-M. Manceau, L.H. Li, A.G. Davies, E.H. Linfield, and R. Colombelli, Room temperature strong light-matter coupling in three dimensional terahertz meta-atoms, Appl. Phys. Lett. 108(10), 101101 (2016),
https://doi.org/10.1063/1.4943167
[31] S. Pūkienė, M. Karaliūnas, A. Jasinskas, E. Dudutienė, B. Čechavičius, J. Devenson, R. Butkutė, A. Udal, and G. Valušis, Enhancement of photoluminescence of GaAsBi quantum wells by parabolic design of AlGaAs barriers, Nanotechnology 30(45), 455001 (2019),
https://doi.org/10.1088/1361-6528/ab36f3
[32] M. Karaliunas, J. Pagalys, V. Jakštas, R. Norkus, A. Urbanowicz, J. Devenson, R. Butkute, A. Udal, and G. Valušis, Spectral properties of incoherent terahertz torch based on parabolic Ga(As, Bi)/AlGaAs quantum wells, Proc. SPIE 11124, 1112409 (2019),
https://doi.org/10.1117/12.2528428
[33] P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, Interband critical points of GaAs and their temperature dependence, Phys. Rev. B 35, 9174 (1987),
https://doi.org/10.1103/PhysRevB.35.9174
[34] I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys, J. Appl. Phys. 89(11), 5815 (2001),
https://doi.org/10.1063/1.1368156
[35] T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities, J. Appl. Phys. 93(3), 1586 (2003),
https://doi.org/10.1063/1.1535733
[36] P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 2nd ed. (John Wiley and Sons, Chichester, 2005) pp. 459,
https://doi.org/10.1002/0470010827
[37] R. Reeder, Z. Ikonić, P. Harrison, A. Udal, and E. Velmre, Laterally pumped GaAs/AlGaAs quantum wells as sources of broadband terahertz radiation, Appl. Phys. Lett. 102(7), 073715 (2007),
https://doi.org/10.1063/1.2783779
[38] Q. Guo, C.K. Ong, H.C. Poon, and Y.P. Feng, Calculation of electron effective masses in AlAs, Phys. Status Solidi B 197(1), 111–117 (1996),
https://doi.org/10.1002/pssb.2221970117
[39] V. Karpus, R. Norkus, R. Butkutė, S. Stanionytė, B. Čechavičius, and A. Krotkus, THz-excitation spectroscopy technique for band-offset determination, Opt. Express 26(26), 33807 (2018),
https://doi.org/10.1364/OE.26.033807
[40] I.P. Marko, S.R. Jin, K. Hild, Z. Batool, Z.L. Bushell, P. Ludewig, W. Stolz, K. Volz, R. Butkutė, V. Pačebutas, A. Geizutis, A. Krotkus, and S.J. Sweeney, Properties of hybrid MOVPE/MBE grown GaAsBi/GaAs based near-infrared emitting quantum well lasers, Semicond. Sci. Technol. 30(9), 094008 (2015),
https://doi.org/10.1088/0268-1242/30/9/094008
[41] A. Udal, R. Reeder, E. Velmre, and P. Harrison, Comparison of methods for solving the Schrödinger equation for multiquantum well heterostructure applications, Proc. Estonian Acad. Sci. Eng. 12(2–3), 246 (2006),
[PDF]
[42] Y. Arakawa, H. Sakaki, M. Nishioka, J. Yoshino, and T. Kamiya, Recombination lifetime of carriers in GaAs-GaAlAs quantum wells near room temperature, Appl. Phys. Lett. 46(5), 519 (1985),
https://doi.org/10.1063/1.95578
[43] R. Ferreira and G. Bastard, Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures, Phys. Rev. B 40, 1074 (1989),
https://doi.org/10.1103/PhysRevB.40.1074
[44] P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 2nd ed. (John Wiley and Sons, Chichester, 2005) pp. 342,
https://doi.org/10.1002/0470010827
[45] Y. Huang and C. Lien, Very large Stark shift in three-coupled-quantum wells and their application to tunable far-infrared photodetectors, J. Appl. Phys. 77(7), 3433 (1995),
https://doi.org/10.1063/1.358635
[46] R. Butkutė, V. Pačebutas, A. Krotkus, N. Knaub, and K. Volz, Migration-enhanced epitaxy of thin GaAsBi layers, Lith. J. Phys. 54(2), 125 (2014),
https://doi.org/10.3952/physics.v54i2.2922
[47] R. Butkutė, G. Niaura, E. Pozingytė, B. Čechavičius, A. Selskis, M. Skapas, V. Karpus, and A. Krotkus, Bismuth quantum dots in annealed GaAsBi/AlAs quantum wells, Nanoscale Res. Lett. 12(1), 436 (2017),
https://doi.org/10.1186/s11671-017-2205-7