[PDF]  https://doi.org/10.3952/physics.v60i3.4304

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 60, 172–184 (2020)
 

PHOTOLUMINESCENCE PROPERTIES OF HYBRID PEROVSKITES IN SOLAR CELLS WITH TiO2 AND Mg0.2Zn0.8O ELECTRON TRANSPORT LAYERS
Aurimas Čerškusa.b, Steponas Ašmontasa, Kazimeras Petrauskasa, Algirdas Sužiedėlisa, Jonas Gradauskasa.b, Anatoliy Serhiyovuch Opanasyukc, and Bonifacas Vengalisa
  a State Research Institute Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
b Vilnius Gediminas Technical University, Saulėtekio 11, 10223 Vilnius, Lithuania
c Sumy State University, 2 Rymskogo-Korsakova St., 40007 Sumy, Ukraine
Email: aurimas.cerskus@ftmc.lt

Received 28 November 2019; revised 3 February 2020; accepted 17 March 2020

This paper presents a study of the photoluminescence properties of hybrid perovskite films deposited on titanium and magnesium zinc oxide films, as electron transport layers, using the spin-coating technique. The subject of the investigation was continuous wave photoluminescence versus temperature, excitation power and transient photoluminescence. Moreover, the paper discusses possible carrier recombination mechanisms. Complex temporal decay was approximated through the use of several models, but only the four-exponent model and the model using the sum of two hyperbolic functions provided a good agreement with the experimental data. The first attempt to replace titanium dioxide with magnesium zinc oxide in conjunction with the perovskite layer showed improved optical properties such as a weaker non-radiative recombination process and a longer decay time constant.
Keywords: perovskite, solar cell, photoluminescence, time resolved spectroscopy
PACS: 81.10.Dn, 84.60.Jt, 78.55.-m, 78.47.D

HIBRIDINIŲ PEROVSKITŲ FOTOLIUMINESCENCIJOS SAVYBĖS SAULĖS ELEMENTUOSE SU TiO2 IR Mg0,2Zn0,8O ELEKTRONŲ PERNAŠOS SLUOKSNIAIS
Aurimas Čerškusa.b, Steponas Ašmontasa, Kazimeras Petrauskasa, Algirdas Sužiedėlisa, Jonas Gradauskasa.b, Anatoliy Serhiyovuch Opanasyukc, Bonifacas Vengalisa

a Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
b Vilniaus Gedimino technikos universitetas, Vilnius, Lietuva
c Valstybinis Sumų universitetas, Sumai, Ukraina

Pateikiami perovskitų sluoksnių, nusodintų centrifuginio dengimo metodu ant titano dioksido ir cinko magnio oksido kaip elektronų pernašos sluoksnių, fotoliuminescencijos savybių tyrimai. Ištirta liuminescencijos priklausomybė nuo temperatūros ir žadinimo intensyvumo bei liuminescencijos gesimo kinetika. Be to, darbe aptariami galimi krūvininkų rekombinacijos mechanizmai. Sudėtingas liuminescencijos gesimas buvo aproksimuotas keliais modeliais, tačiau tik keturių eksponenčių ir dviejų hiperbolinių funkcijų sumos modelis geriausiai aprašo eksperimentinius rezultatus. Pirmas bandymas pakeisti titano dioksidą magnio cinko oksidu pagerino perovskito optines savybes: sumažėjo nespindulinė rekombinacija ir pailgėjo gesimo trukmė.
 
References / Nuorodos

[1] P. Tonui, S.O. Oseni, G. Sharma, Q. Yan, and G.T. Mola, Perovskites photovoltaic solar cells: An overview of current status, Renew. Sustain. Energy Rev. 91, 1025–1044 (2018),
https://doi.org/10.1016/j.rser.2018.04.069
[2] Q. Van Le, H.W. Jang, and S.Y. Kim, Recent advances toward high-efficiency halide perovskite light-emitting diodes: Review and perspective, Small Methods 2(10), 1700419 (2018),
https://doi.org/10.1002/smtd.201700419
[3] Y. Shang, Y. Liao, Q. Wei, Z. Wang, B. Xiang, Y. Ke, W. Liu, and Z. Ning, Highly stable hybrid perovskite light-emitting diodes based on Dion-Jacobson structure, Sci. Adv. 5(8), eaaw8072 (2019),
https://doi.org/10.1126/sciadv.aaw8072
[4] K. Wang, S. Wang, S. Xiao, and Q. Song, Recent advances in perovskite micro- and nano-lasers, Adv. Opt. Mater. 6(18), 1800278 (2018),
https://doi.org/10.1002/adom.201800278
[5] M. Stylianakis, T. Maksudov, A. Panagiotopoulos, G. Kakavelakis, and K. Petridis, Inorganic and hybrid perovskite based laser devices: a review, Materials 12(6), 859 (2019),
https://doi.org/10.3390/ma12060859
[6] X. Liu, D. Yu, X. Song, and H. Zeng, Metal halide perovskites: synthesis, ion migration, and application in field-effect transistors, Small 14(36), 1801460 (2018),
https://doi.org/10.1002/smll.201801460
[7] H. Oga, A. Saeki, Y. Ogomi, S. Hayase, and S. Seki, Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps, J. Am.
Chem. Soc. 136(39), 13818–13825 (2014), pMID: 25188538,
https://doi.org/10.1021/ja506936f
[8] T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, and D. Cahen, Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties, Nat. Rev. Mater. 1(1), 15007 (2016),
https://doi.org/10.1038/natrevmats.2015.7
[9] I.L. Braly, D.W. deQuilettes, L.M. Pazos-Outón, S. Burke, M.E. Ziffer, D.S. Ginger, and H.W. Hillhouse, Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency, Nat. Photonics 12(6), 355–361 (2018),
https://doi.org/10.1038/s41566-018-0154-z
[10] M.A. Green, A. Ho-Baillie, and H.J. Snaith, The emergence of perovskite solar cells, Nat. Photonics 8, 506–514 (2014),
https://doi.org/10.1038/nphoton.2014.134
[11] S.D. Stranks, Nonradiative losses in metal halide perovskites, ACS Energy Lett. 2(7), 1515–1525 (2017),
https://doi.org/10.1021/acsenergylett.7b00239
[12] T.A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-M. Chen, M.-C. Tsai, L.-Y. Chen, A.A. Dubale, and B.-J. Hwang, Organometal halide perovskite solar cells: degradation and stability, Energy Environ. Sci. 9, 323–356 (2016),
https://doi.org/10.1039/C5EE02733K
[13] K.K. Bass, R.E. McAnally, S. Zhou, P.I. Djurovich, M.E. Thompson, and B.C. Melot, Influence of moisture on the preparation, crystal structure, and photophysical properties of organohalide perovskites, Chem. Commun. 50, 15819–15822 (2014),
https://doi.org/10.1039/C4CC05231E
[14] P. Pistor, A. Ruiz, A. Cabot, and V. Izquierdo-Roca, Advanced Raman spectroscopy of methylammonium lead iodide: development of a nondestructive characterisation methodology, Sci. Rep. 6, 35973 (2016),
https://doi.org/10.1038/srep35973
[15] S. Ruan, M.-A. Surmiak, Y. Ruan, D.P. McMeekin, H. Ebendorff-Heidepriem, Y.-B. Cheng, J. Lu, and C.R. McNeill, Light induced degradation in mixed-halide perovskites, J. Mater. Chem. C 7, 9326–9334 (2019),
https://doi.org/10.1039/C9TC02635E
[16] G. Abdelmageed, L. Jewell, K. Hellier, L. Seymour, B. Luo, F. Bridges, J.Z. Zhang, and S. Carter, Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells, Appl. Phys. Lett. 109(23), 233905 (2016),
https://doi.org/10.1063/1.4967840
[17] D.L. Jacobs, M.A. Scarpulla, C. Wang, B.R. Bunes, and L. Zang, Voltage-induced transients in methylammonium lead triiodide probed by dynamic photoluminescence spectroscopy, J. Phys. Chem. C 120(15), 7893–7902 (2016),
https://doi.org/10.1021/acs.jpcc.5b11973
[18] W. Ke, C. Xiao, C. Wang, B. Saparov, H.-S. Duan, D. Zhao, Z. Xiao, P. Schulz, S.P. Harvey, W. Liao, W. Meng, Y. Yu, A.J. Cimaroli, C.-S. Jiang, K. Zhu, M. Al-Jassim, G. Fang, D.B. Mitzi, and Y. Yan, Employing lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells, Adv. Mater. 28(26), 5214–5221 (2016),
https://doi.org/10.1002/adma.201600594
[19] K. Wu, A. Bera, C. Ma, Y. Du, Y. Yang, L. Li, and T. Wu, Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films, Phys. Chem. Chem. Phys. 16, 22476–22481 (2014),
https://doi.org/10.1039/C4CP03573A
[20] S. Zhuang, D. Xu, J. Xu, B. Wu, Y. Zhang, X. Dong, G. Li, B. Zhang, and G. Du, Temperature-dependent photoluminescence on organic inorganic metal halide perovskite CH3NH3PbI3−xClx prepared on ZnO/FTO substrates using a two-step method, Chin. Phys. B 26(1), 017802 (2017),
https://doi.org/10.1088/1367-2630/19/1/017802
[21] T. Liu, K. Chen, Q. Hu, R. Zhu, and Q. Gong, Inverted perovskite solar cells: progresses and perspectives, Adv. Energy Mater. 6(17), 1600457 (2016),
https://doi.org/10.1002/aenm.201600457
[22] C.-Y. Chen, J.-H. Chang, K.-M. Chiang, H.-L. Lin, S.-Y. Hsiao, and H.-W. Lin, Perovskite photovoltaics for dim-light applications, Adv. Funct. Mater. 25(45), 7064–7070 (2015),
https://doi.org/10.1002/adfm.201503448
[23] Y.-C. Wang, X. Li, L. Zhu, X. Liu, W. Zhang, and J. Fang, Efficient and hysteresis-free perovskite solar cells based on a solution processable polar fullerene electron transport layer, Adv. Energy Mater. 7(21), 1701144 (2017),
https://doi.org/10.1002/aenm.201701144
[24] A. Giuri, S. Masi, S. Colella, A. Kovtun, S. Dell’Elce, E. Treossi, A. Liscio, C. Esposito Corcione, A. Rizzo, and A. Listorti, Cooperative effect of GO and glucose on PEDOT:PSS for high VOC and hysteresis-free solution-processed perovskite solar cells, Adv. Funct. Mater. 26(38), 6985–6994 (2016),
https://doi.org/10.1002/adfm.201603023
[25] W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, and Y. Yan, Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells, J. Am. Chem. Soc. 137(21), 6730–6733 (2015),
https://doi.org/10.1021/jacs.5b01994
[26] J.H. Lee, Y.W. Noh, I.S. Jin, S.H. Park, and J.W. Jung, Efficient perovskite solar cells with negligible hysteresis achieved by sol–gel-driven spinel nickel cobalt oxide thin films as the hole transport layer, J. Mater. Chem. C 7, 7288–7298 (2019),
https://doi.org/10.1039/C9TC00902G
[27] X. Yao, W. Xu, X. Huang, J. Qi, Q. Yin, X. Jiang, F. Huang, X. Gong, and Y. Cao, Solution-processed vanadium oxide thin film as the hole extraction layer for efficient hysteresis-free perovskite hybrid solar cells, Org. Electron. 47(C), 85–93 (2017),
https://doi.org/10.1016/j.orgel.2017.05.006
[28] D. Hong, J. Li, S. Wan, I.G. Scheblykin, and Y. Tian, Red-shifted photoluminescence from crystal edges due to carrier redistribution and reabsorption in lead triiodide perovskites, J. Phys. Chem. C 123(19), 12521–12526 (2019),
https://doi.org/10.1021/acs.jpcc.9b03647
[29] M.A. Reshchikov, Temperature dependence of defect-related photoluminescence in III–V and II–VI semiconductors, J. Appl. Phys. 115(1), 012010 (2014),
https://doi.org/10.1063/1.4838038
[30] M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, Temperature quenching of photoluminescence intensities in undoped and doped GaN, J. Appl. Phys. 86(7), 3721–3728 (1999),
https://doi.org/10.1063/1.371242
[31] F. Cheng, S. Hu, L. Chen, Y. Lee, G. Yin, K. Tiong, and J. Shen, Time-resolved photoluminescence studies on localization effects in orthorhombic phase of CH3NH3PbI3 perovskite thin film, J. Lumin. 197, 248–251 (2018),
https://doi.org/10.1016/j.jlumin.2018.01.054
[32] F. Ruf, M.F. Aygüler, N. Giesbrecht, B. Rendenbach, A. Magin, P. Docampo, H. Kalt, and M. Hetterich, Temperature-dependent studies of exciton binding energy and phase-transition suppression in (Cs, FA, MA)Pb(I, Br)3 perovskites, APL Mater. 7(3), 031113 (2019),
https://doi.org/10.1063/1.5083792
[33] R. Mackevičiūtė, Š. Bagdzevičius, M. Ivanov, B. Fraygola, R. Grigalaitis, N. Setter, and J. Banys, Strain engineering of electrical conductivity in epitaxial thin Ba0.7Sr0.3TiO3 film heterostructures, Lith. J. Phys. 56(3), 173–181 (2016),
https://doi.org/10.3952/physics.v56i3.3366
[34] Š. Masys and V. Jonauskas, The crystalline structure of SrRuO3: Application of hybrid scheme to the density functionals revised for solids, Lith. J. Phys. 57(2), 78–87 (2017),
https://doi.org/10.3952/physics.v57i2.3514
[35] T. Schmidt, K. Lischka, and W. Zulehner, Excitation-power dependence of the near-band-edge photoluminescence of semiconductors, Phys. Rev. B 45, 8989–8994 (1992),
https://doi.org/10.1103/PhysRevB.45.8989
[36] H. Shibata, M. Sakai, A. Yamada, K. Matsubara, K. Sakurai, H. Tampo, S. Ishizuka, K.-Kim, and S. Niki, Excitation-power dependence of free exciton photoluminescence of semiconductors, Jpn. J. Appl. Phys. 44(8), 6113–6114 (2005),
https://doi.org/10.1143/jjap.44.6113
[37] Y.-S. Yoo, T.-M. Roh, J.-H. Na, S.J. Son, and Y.-H. Cho, Simple analysis method for determining internal quantum efficiency and relative recombination ratios in light emitting diodes, Appl. Phys. Lett. 102(21), 211107 (2013),
https://doi.org/10.1063/1.4807485
[38] D. Ding, S.R. Johnson, J.B. Wang, S.Q. Yu, and Y.H. Zhang, Determination of spontaneous emission quantum efficiency in InGaAs/GaAs quantum well structures, Proc. SPIE 6841, 68410D (2007),
https://doi.org/10.1117/12.759592
[39] S.R. Johnson, D. Ding, J.-B. Wang, S.-Q. Yu, and Y.-H. Zhang, Excitation dependent photoluminescence measurements of the nonradiative lifetime and quantum efficiency in GaAs, J. Vac. Sci. Technol. B 25(3), 1077–1082 (2007),
https://doi.org/10.1116/1.2720864
[40] X. Yang, X. Yan, W. Wang, X. Zhu, H. Li, W. Ma, and C. Sheng, Light induced metastable modification of optical properties in CH3NH3PbI3–xBrx perovskite films: Two-step mechanism, Org. Electron. 34, 79–83 (2016),
https://doi.org/10.1016/j.orgel.2016.04.020
[41] I. Dursun, Y. Zheng, T. Guo, M. De Bastiani, B. Turedi, L. Sinatra, M.A. Haque, B. Sun, A.A. Zhumekenov, M.I. Saidaminov, F.P. García de Arquer, E.H. Sargent, T. Wu, Y.N. Gartstein, O.M. Bakr, O.F. Mohammed, and A.V. Malko, Efficient photon recycling and radiation trapping in cesium lead halide perovskite waveguides, ACS Energy Lett. 3(7), 1492–1498 (2018),
https://doi.org/10.1021/acsenergylett.8b00758
[42] A.J. Knight, A.D. Wright, J.B. Patel, D.P. McMeekin, H.J. Snaith, M.B. Johnston, and M. Herz, Electronic traps and phase segregation in lead mixed-halide perovskite, ACS Energy Lett. 4(1), 75–84 (2019),
https://doi.org/10.1021/acsenergylett.8b02002
[43] B. Zhang, F. Guo, J. Xue, L. Yang, Y. Zhao, M. Ge, Q. Cai, B. Liu, Z. Xie, D. Chen, H. Lu, R. Zhang, and Y. Zheng, Photoluminescence study of the photoinduced phase separation in mixed-halide hybrid perovskite CH3NH3Pb(BrxI1–x)3 crystals synthesized via a solvothermal method, Sci. Rep. 7(1), 17695 (2017),
https://doi.org/10.1038/s41598-017-18110-6
[44] A. Sadhanala, F. Deschler, T.H. Thomas, S.E. Dutton, K.C. Goedel, F.C. Hanusch, M.L. Lai, U. Steiner, T. Bein, P. Docampo, D. Cahen, and R.H. Friend, Preparation of single-phase films of CH3NH3Pb(I1–xBrx)3 with sharp optical band edges, J. Phys. Chem. Lett. 5(15), 2501–2505 (2014), pMID: 26277936,
https://doi.org/10.1021/jz501332v
[45] A.A. Mamun, T.T. Ava, H.J. Jeong, M.S. Jeong, and G. Namkoong, A deconvoluted PL approach to probe the charge carrier dynamics of the grain interior and grain boundary of a perovskite film for perovskite solar cell applications, Phys. Chem. Chem. Phys. 19, 9143–9148 (2017),
https://doi.org/10.1039/C7CP01140G
[46] D.W. de Quilettes, S.M. Vorpahl, S.D. Stranks, H. Nagaoka, G.E. Eperon, M.E. Ziffer, H.J. Snaith, and D.S. Ginger, Impact of microstructure on local carrier lifetime in perovskite solar cells, Science 348(6235), 683–686 (2015),
https://doi.org/10.1126/science.aaa5333
[47] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environ. Sci. 9, 1989–1997 (2016),
https://doi.org/10.1039/C5EE03874J
[48] B.-W. Park, S.M. Jain, X. Zhang, A. Hagfeldt, G. Boschloo, and T. Edvinsson, Resonance Raman and excitation energy dependent charge transfer mechanism in halide-substituted hybrid perovskite solar cells, ACS Nano 9(2), 2088–2101 (2015), pMID: 25668059,
https://doi.org/10.1021/nn507345e
[49] P. Sanguino, M. Niehus, L. Melo, R. Schwarz, A. Fedorov, J. Martinho, M. Soares, and T. Monteiro, Photoluminescence decay in the ps time regime and structural properties of pulsed-laser deposited GaN, Phys. B Condens. Matter 340–342, 457–461 (2003),
https://doi.org/10.1016/j.physb.2003.09.035
[50] S. Bharill, P. Sarkar, J.D. Ballin, I. Gryczynski, G.M. Wilson, and Z. Gryczynski, Fluorescence intensity decays of 2-aminopurine solutions: Lifetime distribution approach, Anal. Biochem. 377(2), 141–149 (2008),
https://doi.org/10.1016/j.ab.2008.03.034
[51] J.M. Remington, A.M. Philip, M. Hariharan, and B. Kohler, On the origin of multiexponential fluorescence decays from 2-aminopurine-labeled dinucleotides, J. Chem. Phys. 145(15), 155101 (2016),
https://doi.org/10.1063/1.4964718
[52] H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang, and Z. Ye, Exciton localization in solution-processed organolead trihalide perovskites, Nat. Commun. 7(1), 10896 (2016),
https://doi.org/10.1038/ncomms10896
[53] M.N. Berberan-Santos, A luminescence decay function encompassing the stretched exponential and the compressed hyperbola, Chem. Phys. Lett. 460(1), 146–150 (2008),
https://doi.org/10.1016/j.cplett.2008.06.023
[54] A. Zatryb, G. Podhorodecki, J. Misiewicz, J. Cardin, and F. Gourbilleau, On the nature of the stretched exponential photoluminescence decay for silicon nanocrystals, Nanoscale Res. Lett. 6(1), 106 (2011),
https://doi.org/10.1186/1556-276X-6-106
[55] B.J. Pernick, Luminescent processes and decay laws in crystalline materials, Appl. Opt. 1(6), 753–758 (1962),
https://doi.org/10.1364/AO.1.000753
[56] M. Berberan-Santos, E. Bodunov, and B. Valeur, Mathematical functions for the analysis of luminescence decays with underlying distributions: 2. Becquerel (compressed hyperbola) and related decay functions, Chem. Phys. 317(1), 57–62 (2005),
https://doi.org/10.1016/j.chemphys.2005.05.026
[57] L. Whitehead, R. Whitehead, B. Valeur, and M. Berberan-Santos, A simple function for the description of near-exponential decays: The stretched or compressed hyperbola, Am. J. Phys. 77(2), 173–179 (2009),
https://doi.org/10.1119/1.3008007
[58] P. Strak, K. Koronski, K. Sobczak, J. Borysiuk, K.P. Korona, K. Sakowski, A. Suchocki, E. Monroy, S. Krukowski, and A. Kaminska, Exact method of determination of the recombination mode from time resolved photoluminescence data, arXiv:1709.05249v4 (2019),
https://arxiv.org/abs/1709.05249v4