[PDF]  https://doi.org/10.3952/physics.v60i3.4306

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 60, 194–204 (2020)


THE FORMATION OF SELF-ASSEMBLED STRUCTURES OF C60 IN SOLUTION AND IN THE VOLUME OF AN EVAPORATING DROP OF A COLLOIDAL SOLUTION
Urol Kudratovich Makhmanova, Abdulmutallib Kokhkharova, Sagdilla Bakhramova, and Donats Ertsb
  a Institute of Ion-Plasma and Laser Technologies, Uzbekistan Academy Sciences, 33 Durmon Yuli St., 100125 Tashkent, Uzbekistan
b Institute of Chemical Physics, University of Latvia, 19 Raina Blvd., 1586 Riga, Latvia
Email: urolmakh@gmail.com

Received 15 April 2020; revised 12 June 2020; accepted 17 June 2020

The results of experiments on the self-aggregation of C60 fullerene molecules both inside a two-component solvent (xylene/tetrahydrofuran) and in the volume of an evaporating drop of C60 colloidal solution on a flat substrate surface are presented. The investigations of C60 solutions using dynamic light scattering, transmission electron microscopy and UV–Vis absorption spectroscopy methods revealed the possibility of synthesis of fractal nanoaggregates with a diameter of up to ~135 nm at low concentrations of C60 in the solutions. The final geometric dimensions of C60 nanoaggregates were determined by the initial concentration of fullerene in the solvent medium. Using the scanning electron microscopy method, we have shown that in an open dissipative system – in the volume of an evaporating droplet of the colloidal solution of fullerene C60 sessile on the surface of a flat glass substrate, large quasispherical nanoaggregates with an average diameter of ~380–800 nm are formed. The physical features and regularities that characterize the processes of self-aggregation of fullerene particles in the volume of a drying drop were determined.
Keywords: fullerene C60, solvent mixture, self-aggregation, nanoaggregate, evaporating drop
PACS: 61.46.Bc, 81.05.Tp

SAVITVARKIŲ C60 DARINIŲ FORMAVIMASIS TIRPALE IR KOLOIDINIO TIRPALO GARUOJANČIO LAŠO TŪRYJE
Urol Kudratovich Makhmanova, Abdulmutallib Kokhkharova, Sagdilla Bakhramova, Donats Ertsb

a Uzbekistano mokslų akademijos Jonų plazmos ir lazerinių technologijų institutas, Taškentas, Uzbekistanas
b Latvijos universiteto Cheminės fizikos institutas, Ryga, Latvija


References / Nuorodos

[1] K.N. Semenov, N.A. Charykov, V.A. Keskinov, A.K. Piartman, A.A. Blokhin, and A.A. Kopyrin, Solubility of light fullerenes in organic solvents, J. Chem. Eng. Data 55, 13 (2010),
https://doi.org/10.1021/je900296s
[2] N.O. Mchedlov-Petrossyan, Fullerenes in molecular liquids. Solutions in ‘good’ solvents: Another view, J. Mol. Liq. 161, 1 (2011),
https://doi.org/10.1016/j.molliq.2011.04.001
[3] I.I. Adamenko, L.A. Bulavin, K.O. Moroz, and I.Yu Prilutski, Equation of state for C60 toluene solution, J. Mol. Liq. 105, 149 (2003),
https://doi.org/10.1007/s10765-005-5578-2
[4] K.L. Chen and M. Elimelech, Aggregation and deposition kinetics of fullerene (C60) nanoparticles, Langmuir 22, 10994 (2006),
https://doi.org/10.1021/la062072v
[5] A.J. Patnaik, Structure and dynamics in self-organized C60 fullerenes, Nanosci. Nanotechnol. 7, 1111 (2007),
https://doi.org/10.1166/jnn.2007.303
[6] N.O. Mchedlov-Petrossyan, Fullerenes in liquid media: an unsettling intrusion into the solution chemistry, Chem. Rev. 113, 5149 (2013),
https://doi.org/10.1021/cr3005026
[7] A.M. Kokhkharov, E.A. Zakhidov, Sh.P. Gofurov, S.A. Bakhramov, and U.K. Makhmanov, Clusterization of fullerene C70 molecules in solutions and its influence to optical and nonlinear optical properties of solutions, Int. J. Nanosci. 12, 1350027 (2013),
https://doi.org/10.1142/S0219581X13500270
[8] A. Ruiz, M. Suarez, N. Martin, F. Albericio, and H. Rodríguez, Morphological characterization of fullerene–androsterone conjugates, Beilstein J. Nanotechnol. 5, 374 (2014),
https://doi.org/10.3762/bjnano.5.43
[9] S.A. Bakhramov, A.M. Kokhkharov, E.A. Zakhidov, U.K. Makhmanov, and S.P. Gofurov, Clusterization of fullerene C60/70 molecules in solutions and its influence on the optical and the nonlinear optical properties of solutions, J. Korean Phys. Soc. 64, 1494 (2014),
https://doi.org/10.3938/jkps.64.1494
[10] T.V. Nagorna, O.A. Kyzyma, D. Chudoba, and A.V. Nagornyi, Temporal solvatochromic effect in ternary C70/toluene/N-methyl-pyrrolidine-2-one solution, J. Mol. Liq. 235, 111 (2017),
https://doi.org/10.1016/j.molliq.2016.12.017
[11] N.S. Lebedeva, Y.A. Gubarev, A.M. Kolker, and N.Y. Borovkov, Thermochemical insights into fullerene aggregation and the phthalocyanine-fullerene interaction in efficient solvents, ChemPhysChem 19, 284 (2018),
https://doi.org/10.1002/cphc.201701127
[12] N. Tagmatarchis and H. Shinohara, Fullerenes in medicinal chemistry and their biological applications, Mini-Rev. Med. Chem. 1, 339 (2001),
https://doi.org/10.2174/1389557013406684
[13] B. Sitharaman, T.Y. Zakharian, A. Saraf, P.M. J. Ashcroft, S. Pan, Q.P. Pham, A.G. Mikos, L.J. Wilson, and D.A. Engler, Water-soluble fullerene (C60) derivatives as nonviral gene-delivery vectors, Mol. Pharm. 5, 567 (2008),
https://doi.org/10.1021/mp700106w
[14] J. Tam, J. Liu, and Z. Yao, Effect of microstructure on the antioxidant properties of fullerene polymer solutions, RSC Adv. 3, 4622 (2013),
https://doi.org/10.1039/C3RA22582H
[15] J.D. Fortner, D.Y. Lyon, C.M. Sayes, A.M. Boyd, J.C. Falkner, E.M. Hotze, L.B. Alemany, Y.J. Tao, W. Guo, K.D. Ausman, V.L. Colvin, and J.B. Hughes, C60 in water: nanocrystal formation and microbial response, Environ. Sci. Technol. 39, 4307 (2005),
https://doi.org/10.1021/es048099n
[16] D.Y. Lyon, L.K. Adams, J.C. Falkner, and P.J.J. Alvarez, Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size, Environ. Sci. Technol. 40, 4360 (2006),
https://doi.org/10.1021/es0603655
[17] S.R. Grobmyer and V. Krishna, Minimally invasive cancer therapy using polyhydroxy fullerenes, Eur. J. Radiol. 81, S51 (2012),
https://doi.org/10.1016/S0720-048X(12)70019-0
[18] S. Kim, D.J. Lee, D.S. Kwag, U.Y. Lee, Y.S. Youn, and E.S. Lee, Acid pH-activated glycol chitosan/fullerene nanogels for efficient tumor therapy, Carbohyd. Polym. 101, 692 (2014),
https://doi.org/10.1016/j.carbpol.2013.09.108
[19] Q. Li, C. Liu, and H.J. Li, Induction of endogenous reactive oxygen species in mitochondria by fullerene-based photodynamic therapy, Nanosci. Nanotechnol. 16, 5592 (2016),
https://doi.org/10.1166/jnn.2016.11717
[20] N. Furuuchi, R. Shrestha, Y. Yamashita, T. Hirao, K. Ariga, and L. Shrestha, Self-assembled fullerene crystals as excellent aromatic vapor sensors, Sensors 19, 267 (2019),
https://doi.org/10.3390/s19020267
[21] Y. Shen, A. Saeki, S. Seki, J.-O. Lee, J. Aimi, and T. Nakanishi, Exfoliation of graphene and assembly formation with alkylated-C60: a nanocarbon hybrid towards photo-energy conversion electrode devices, Adv. Opt. Mater. 3, 925 (2015),
https://doi.org/10.1002/adom.201400619
[22] S. Das and M.J. Presselt, Progress and development in structural and optoelectronic tunability of supramolecular nonbonded fullerene assemblies, Mater. Chem. C 7, 6194 (2019),
https://doi.org/10.1039/C9TC00889F
[23] S. Das, F. Herrmann-Westendorf, F.H. Schacher, E. Täuscher, U. Ritter, B. Dietzek, and M. Presselt, Controlling electronic transitions in fullerene van der Waals aggregates via supramolecular assembly, ACS Appl. Mater. Interfaces 8, 21512 (2016),
https://doi.org/10.1021/acsami.6b06800
[24] C. Lindqvist, E. Moons, and J. Stam, Fullerene aggregation in thin films of polymer blends for solar cell applications, Materials 11, 2068 (2018),
https://doi.org/10.3390/ma11112068
[25] Y. Mao, W. Li, M. Chen, X. Chen, R.S. Gurney, and D. Liu, Evolution of molecular aggregation in bar-coated non-fullerene organic solar cells, Mater. Chem. Front. 3, 1062 (2019),
https://doi.org/10.1039/C9QM00078J
[26] T.P. Bigioni, X.M. Lin, T.T. Nguyen, E.I. Corwin, T.A. Witten, and H.M. Jaeger, Kinetically driven self assembly of highly ordered nanoparticle monolayers, Nat. Mater. 5, 265 (2006),
https://doi.org/10.1038/nmat1611
[27] M. Nuzzo, A. Millqvist-Fureby, J. Sloth, and B. Bergenstahl, Surface composition and morphology of particles dried individually and by spray drying, Dry. Technol. 33, 757 (2014),
https://doi.org/10.1080/07373937.2014.990566
[28] A. Baldelli, R.M. Power, R.E.H. Miles, J.P. Reid, and R. Vehring, Effect of crystallization kinetics on the properties of spray dried microparticles, Aerosol Sci. Tech. 50, 693 (2016),
https://doi.org/10.1080/02786826.2016.1177163
[29] G. Karapetsas, Ch.K. Sahu, and O.K. Matar, Evaporation of sessile droplets laden with particles and insoluble surfactants, Langmuir 32, 6871 (2016),
https://doi.org/10.1021/acs.langmuir.6b01042
[30] S.A. Bakhramov, A.M. Kokhkharov, and U.K. Makhmanov, Thin semiconductor films of fullerene C70 nanoaggregates on the surface of a plane glass substrate, Appl. Sol. Energ. 54, 164 (2018),
https://doi.org/10.3103/S0003701X18030052
[31] Y. Yu. Tarasevich, I.V. Vodolazskaya, and O.P. Isakova, Desiccating colloidal sessile drop: dynamics of shape and concentration, Colloid Polym. Sci. 289, 1015 (2011),
https://doi.org/10.1007/s00396-011-2418-8
[32] M.V. Shuba, A.G. Paddubskaya, A.O. Plyushch, P.P. Kuzhir, G.Ya. Slepyan, S.A. Maksimenko, V.K. Ksenevich, P. Buka, D. Seliuta, I. Kasalynas, J. Macutkevic, G. Valusis, C. Thomsen, and A. Lakhtakia, Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes, Phys. Rev. B 85, 165435 (2012),
https://doi.org/10.1103/PhysRevB.85.165435
[33] Y. Tsoumpas, S. Dehaeck, A. Rednikov, and P. Colinet, Effect of Marangoni flows on the shape of thin sessile droplets evaporating into air, Langmuir 31, 13334 (2015),
https://doi.org/10.1021/acs.langmuir.5b02673
[34] R.E.H. Miles, J.F. Davies, and J.P. Reid, The influence of the surface composition of mixed monolayer films on the evaporation coefficient of water, Phys. Chem. Chem. Phys. 18, 19847 (2016),
https://doi.org/10.1039/C6CP03826C
[35] M. Eslamian, Spray-on thin film PV solar cells: advances, potentials and challenges, Coatings 4, 60 (2014),
https://doi.org/10.3390/coatings4010060
[36] J. Važgėla, M. Stephen, G. Juška, K. Genevičius, and K. Arlauskas, Charge carrier transport properties in ternary Si-PCPDTBT:P3HT:PCBM solar cells, Lith. J. Phys. 57, 37 (2017),
https://doi.org/10.3952/physics.v57i1.3454
[37] T. Yakhno, A. Sanin, R. Ilyazov, G. Vildanova, R. Khamzin, N. Astascheva, M. Markovsky, V. Bashirov, and V.J. Yakhno, Drying drop technology as a possible tool for detection leukemia and tuberculosis in cattle, Biomed. Sci. Eng. 8, 1 (2015),
https://doi.org/10.4236/jbise.2015.81001
[38] M.T.A. Rajabi and M. Sharifzadeh, ‘Coffee ring effect’ in ophthalmology: ‘anionic dye deposition’ hypothesis explaining normal lid margin staining, Medicine 95, e3137 (2016),
https://doi.org/10.1097/MD.0000000000003137
[39] L. Lanotte, D. Laux, B. Charlot, and M. Abkarian, Role of red cells and plasma composition on blood sessile droplet evaporation, Phys. Rev. E 96, 053114 (2017),
https://doi.org/10.1103/PhysRevE.96.053114
[40] J. Park and J. Moon, Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing, Langmuir 22, 3506 (2006),
https://doi.org/10.1021/la053450j
[41] F. Hoeng, J. Bras, E. Gicquel, G. Krosnicki, and A. Denneulin, Inkjet printing of nanocellulose–silver ink onto nanocellulose coated cardboard, RSC Adv. 7, 15372 (2017),
https://doi.org/10.1039/C6RA23667G
[42] X. Ye and L. Qi, Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications, Nano Today 6, 608 (2011),
https://doi.org/10.1016/j.nantod.2011.10.002
[43] V. Lotito and T.J. Zambelli, Self-assembly and nanosphere lithography for large-area plasmonic patterns on graphene, Colloid Interface Sci. 447, 202 (2015),
https://doi.org/10.1016/j.jcis.2014.11.007
[44] U.K. Makhmanov, A.M. Kokhkharov, and S.A. Bakhramov, Organic fractal nano-dimensional structures based on fullerene C60, Fuller. Nanotub. Car. N. 27, 273 (2019),
https://doi.org/10.1080/1536383X.2019.1570922
[45] L.A. Bulavin, I.I. Adamenko, V.M. Yashchuk, T.Yu. Ogul’chansky, Yu.I. Prylutskyy, S.S. Durov, and P. Scharff, Self-organization C60 nanoparticles in toluene solution, J. Mol. Liq. 93, 187 (2001),
https://doi.org/10.1016/S0167-7322(01)00228-8
[46] U.K. Makhmanov, O.B. Ismailova, A.M. Kokhkharov, E.A. Zakhidov, and S.A. Bakhramov, Features of self-aggregation of C60 molecules in toluene prepared by different methods, Phys. Lett. A 380, 2081 (2016),
https://doi.org/10.1016/j.physleta.2016.04.030
[47] R.V. Bemasson, E. Bienvenue, M. Dellinger, S. Leac, and P. Seta, C60 in model biological systems. A visible-UV absorption study of solvent-dependent parameters and solute aggregation, J. Phys. Chem. 98, 3492 (1994),
https://doi.org/10.1021/j100064a035
[48] Yu. Prilutski, S. Durov, L. Bulavin, V. Pogorelov, Y. Astashkin, V. Yashchuk, T. Ogul’chansky, E. Buzaneva, and G. Andrievsky, Study of structure of colloidal particles of fullerenes in water solution, Mol. Cryst. Liq. Cryst. 324, 65 (1998),
https://doi.org/10.1080/10587259808047135
[49] S. Karpitschka, F. Liebig, and H. Riegler, Marangoni contraction of evaporating sessile droplets of binary mixtures, Langmuir 33, 4682 (2017),
https://doi.org/10.1021/acs.langmuir.7b00740