Received 3 September 2020; revised 27 October 2020; accepted 27
      October 2020
      
      
 
        [1] D. Berlincourt, C. Cmolik, and H. Jaffe, Piezoelectric
        properties of polycrystalline lead titanate zirconate
        compositions, Proc. IRE 
48(2), 220–229 (1960), 
        
https://doi.org/10.1109/JRPROC.1960.287467
        [2] G. Ngueta and A.P. Kengne, Low-level environmental lead
        exposure and dysglycemia in adult individuals: Results from the
        Canadian health and measure survey 2007–2011, Biol. Trace Elem.
        Res. 
175(2), 278–286 (2017), 
        
https://doi.org/10.1007/s12011-016-0786-0
        [3] S. Tong, Y.E. von Schirnding, and T. Prapamontol,
        Environmental lead exposure: a public health problem of global
        dimensions, Bull. World Health Organ. 
78(9), 1068–1077
        (2000), 
        
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2560844/
        [4] M.D. Sanborn, A. Abelsohn, M. Campbell, and E. Weir,
        Identifying and managing adverse environmental health effects:
        3. Lead exposure, Can. Med. Assoc. J. 
166(10), 1287–1292
        (2002), 
        
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC111081/
        [5] E.U. Council, 
Directive 2002/95/EC of the European
          Parliament and of the Council (2003), 
        
https://eur-lex.europa.eu
        [6] U.S. EPA, 
Summary of the Toxic Substances Control Act
        (1976), 
        
https://www.epa.gov
        [7] Y. Qin, S. Zhang, Y. Wu, C. Lu, and J. Zhang, Impacts of
        acceptor doping on the piezoelectric properties and domain
        structure in NBT-based lead-free ceramics, J. Eur. Ceram. Soc. 
37(11),
        3493–3500 (2017), 
        
https://doi.org/10.1016/j.jeurceramsoc.2017.04.047
        [8] T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li, T.-L. Men, C. Zhao,
        D. Xiao, J. Wu, K. Wang, et al., The structural origin of
        enhanced piezoelectric performance and stability in lead free
        ceramics, Energy Environ. Sci. 
10(2), 528–537 (2017), 
        
https://doi.org/10.1039/C6EE03597C
        [9] G. Viola, R. McKinnon, V. Koval, A. Adomkevicius, S. Dunn,
        and H. Yan, Lithium-induced phase transitions in lead-free Bi
0.5Na
0.5TiO
3
        based ceramics, J. Phys. Chem. C 
118(16), 8564–8570
        (2014), 
        
https://doi.org/10.1021/jp500609h
        [10] W. Bai, P. Li, L. Li, J. Zhang, B. Shen, and J. Zhai,
        Structure evolution and large strain response in BNT–BT
        lead-free piezoceramics modified with Bi(Ni
0.5Ti
0.5)O
3,
        J. Alloys Compd. 
649 (Supplement C), 772–781 (2015), 
        
https://doi.org/10.1016/j.jallcom.2015.07.178
        [11] P. Berik, W.-Y. Chang, and X. Jiang, Piezoelectric d36
        in-plane shear-mode of lead-free BZTBCT single crystals for
        torsion actuation, Appl. Phys. Lett. 
110(5), 052902
        (2017), 
        
https://doi.org/10.1063/1.4975587
        [12] B. Jaffe, 
Piezoelectric Ceramics (Elsevier, 2012),
        
        
https://www.elsevier.com/books/piezoelectric-ceramics/jaffe/978-0-12-379550-2
        [13] R. Guo, L. Cross, S. Park, B. Noheda, D. Cox, and G.
        Shirane, Origin of the high piezoelectric response in PbZr
1–xTi
xO
3,
        Phys. Rev. Lett. 
84(23), 5423 (2000), 
        
https://doi.org/10.1103/PhysRevLett.84.5423
        [14] S. Wada, S. Shimizu, K. Yamashita, I. Fujii, K. Nakashima,
        N. Kumada, Y. Kuroiwa, Y. Fujikawa, D. Tanaka, and M. Furukawa,
        Preparation of barium titanate–potassium niobate nanostructured
        ceramics with artificial morphotropic phase boundary structure
        by solvothermal method, Jpn. J. Appl. Phys. 
50(9S2),
        09NC08 (2011), 
        
https://doi.org/10.7567/JJAP.50.09NC08
        [15] I. Fujii, S. Shimizu, K. Yamashita, K. Nakashima, N.
        Kumada, C. Moriyoshi, Y. Kuroiwa, Y. Fujikawa, D. Tanaka, M.
        Furukawa, and S. Wada, Enhanced piezoelectric response of BaTiO
3–KNbO
3
        composites, Appl. Phys. Lett. 
99(20), 202902 (2011), 
        
https://doi.org/10.1063/1.3662397
        [16] G.K.L. Goh, C.G. Levi, J.H. Choi, and F.F. Lange,
        Hydrothermal epitaxy of KNbO3 thin films and nanostructures, J.
        Cryst. Growth 
286(2), 457–464 (2006), 
        
https://doi.org/10.1016/j.jcrysgro.2005.10.021
        [17] A. von Hippel, Ferroelectricity, domain structure, and
        phase transitions of barium titanate, Rev. Mod. Phys. 
22(3),
        221 (1950), 
        
https://doi.org/10.1103/RevModPhys.22.221
        [18] Y. Hirose, S. Ueno, K. Nakashima, and S. Wada, Preparation
        of BaTiO
3 nano-structured ceramics by solvothermal
        solidification method, Trans. Mater. Res. Soc. Jpn. 
40(3),
        239–242 (2015), 
        
https://doi.org/10.14723/tmrsj.40.239
        [19] Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L.
        Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni,
        Grain-size effects on the ferroelectric behavior of dense
        nanocrystalline BaTiO
3 ceramics, Phys. Rev. B 
70(2),
        024107 (2004), 
        
https://doi.org/10.1103/PhysRevB.70.024107
        [20] K.S. Cole and R.H. Cole, Dispersion and absorption in
        dielectrics I. Alternating current characteristics, J. Chem.
        Phys. 
9(4), 341–351 (1941), 
        
https://doi.org/10.1063/1.1750906
        [21] R. Newton, A. Ahearn, and K. McKay, Observation of the
        ferro-electric Barkhausen effect in barium titanate, Phys. Rev.
        
75(1), 103 (1949), 
        
https://doi.org/10.1103/PhysRev.75.103
        [22] H.B. Huntington and R.D. Southwick, Ultrasonic velocities
        in polarized barium titanate ceramics, J. Acoust. Soc. Am. 
27(4),
        677–679 (1955), 
        
https://doi.org/10.1121/1.1907991
        [23] S. Kashida, I. Hatta, A. Ikushima, and Y. Yamada,
        Ultrasonic velocities in BaTiO
3, J. Phys. Soc. Jpn. 
34(4),
        997–1001 (1973), 
        
https://doi.org/10.1143/JPSJ.34.997
        [24] K. Lichtenecker, Dielectric constant of natural and
        synthetic mixtures, Phys. Z. 
27, 115 (1926)
        [25] A. Goncharenko, V. Lozovski, and E. Venger, Lichtenecker's
        equation: applicability and limitations, Opt. Commun. 
174(1),
        19–32 (2000), 
        
https://doi.org/10.1016/S0030-4018(99)00695-1
        [26] G. Arlt, U. Böttger, and S. Witte, Dielectric dispersion of
        ferroelectric ceramics and single crystals at microwave
        frequencies, Ann. Phys. 
506(7–8), 578–588 (1994), 
        
https://doi.org/10.1002/andp.19945060703
        [27] D. Nuzhnyy, E. Buixaderas, I. Rychetsky, C. Kadle, J.
        Petzelt, H. Uršič, and B. Malič, Percolation in the dielectric
        function of Pb(Zr, Ti)O
3 – Pb
2 Ru
2O
6.5
        ferroelectric – metal composites, J. Phys. Appl. Phys. 
47(49),
        495301 (2014), 
        
https://doi.org/10.1088/0022-3727/47/49/495301
        [28] B.L. Cheng, M. Gabbay, W. Duffy, and G. Fantozzi,
        Mechanical loss and Young's modulus associated with phase
        transitions in barium titanate based ceramics, J. Mater. Sci. 
31(18),
        4951–4955 (1996), 
        
https://doi.org/10.1007/BF00355886
        [29] J.J. Wang, F.Y. Meng, X.Q. Ma, M.X. Xu, and L.Q. Chen,
        Lattice, elastic, polarization, and electrostrictive properties
        of BaTiO
3 from first-principles, J. Appl. Phys. 
108(3),
        034107 (2010), 
        
https://doi.org/10.1063/1.3462441
        [30] A.J. Bell, Phenomenologically derived electric
        field-temperature phase diagrams and piezoelectric coefficients
        for single crystal barium titanate under fields along different
        axes, J. Appl. Phys. 
89(7), 3907–3914 (2001), 
        
https://doi.org/10.1063/1.1352682
        [31] H.F. Kay and P. Vousden, XCV. Symmetry changes in barium
        titanate at low temperatures and their relation to its
        ferroelectric properties, Lond. Edinb. Dublin Philos. Mag. J.
        Sci. 
40(309), 1019–1040 (1949), 
        
https://doi.org/10.1080/14786444908561371
        [32] J. Shieh, J.H. Yeh, Y.C. Shu, and J.H. Yen, Hysteresis
        behaviors of barium titanate single crystals based on the
        operation of multiple 90° switching systems, Mater. Sci. Eng. B
        
161(1), 50–54 (2009), 
        
https://doi.org/10.1016/j.mseb.2008.11.046
        [33] H.H. Wieder, Electrical behavior of barium titanate single
        crystals at low temperatures, Phys. Rev. 
99(4),
        1161–1165 (1955), 
        
https://doi.org/10.1103/PhysRev.99.1161
        [34] T. Schenk, E. Yurchuk, S. Mueller, U. Schroeder, S.
        Starschich, U. Böttger, and T. Mikolajick, About the deformation
        of ferroelectric hystereses, Appl. Phys. Rev. 
1(4),
        041103 (2014), 
        
https://doi.org/10.1063/1.4902396
        [35] L. Jin, F. Li, and S. Zhang, Decoding the fingerprint of
        ferroelectric loops: comprehension of the material properties
        and structures, J. Am. Ceram. Soc. 
97(1), 1–27 (2014), 
        
https://doi.org/10.1111/jace.12773
        [36] N.H. Khansur, H. Kawashima, S. Wada, J.M. Hudspeth, and J.
        Daniels, Enhanced extrinsic domain switching strain in
        core–shell structured BaTiO
3–KNbO
3
        ceramics, Acta Mater. 
98(Supplement C), 182–189 (2015),
        
        
https://doi.org/10.1016/j.actamat.2015.07.034
        [37] T. Ostapchuk, J. Petzelt, M. Savinov, V. Buscaglia, and L.
        Mitoseriu, Grain-size effect in BaTiO
3 ceramics:
        study by far infrared spectroscopy, Phase Transit. 
79(6–7),
        361–373 (2006), 
        
https://doi.org/10.1080/01411590600892047
        [38] M.D. Fontana, G. Metrat, J.L. Servoin, and F. Gervais,
        Infrared spectroscopy in KNbO
3 through the successive
        ferroelectric phase transitions, J. Phys. C 
17(3), 483
        (1984), 
        
https://doi.org/10.1088/0022-3719/17/3/020