[PDF]  https://doi.org/10.3952/physics.v61i4.4643

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 61, 251–260 (2021)
 

SYNTHESIS AND CHARACTERIZATION OF IRIDIUM-DOPED MULTI-WALLED CARBON NANOTUBES
Eldar Jakubovskija, Algirdas Selskisb, Ilja Ignatjevc, Giedrius Stalnionisb, and Valdas Šablinskasa
  a Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
b Department of Structural Analysis of Materials, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
c Department of Organic Chemistry, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: mail@eldar.jakubovskij.name

Received 4 August 2021; accepted 6 September 2021

Multi-walled carbon nanotubes have been prepared by chemical vapour deposition pyrolysis of ethyl alcohol at 665 °C. The addition of atoms other than carbon to the nanostructure, in our case the iridium component, leads to the formation of defects that contribute to changes in the electrical and optoelectrical properties. The formation and structural changes of multi-walled nanotubes were studied using an electron microscope, Raman and energydisperse spectrometry. Using the Raman and X-ray spectrum, a clear difference between the synthesis without and with the addition of iridium impurities was found.
Keywords: multi-walled carbon nanotubes (MWCNT), iridium-doped, nanohybrid composite, Raman spectrum, energy-dispersive X-ray spectroscopy

DAUGIASIENIŲ ANGLIES NANOVAMZDELIŲ SU IRIDŽIO PRIEMAIŠOMIS SINTEZĖ IR CHARAKTERIZAVIMAS
Eldar Jakubovskija, Algirdas Selskisb, Ilja Ignatjevc, Giedrius Stalnionisb, Valdas Šablinskasa

a Vilniaus universiteto Fizikos fakulteto Cheminės fizikos institutas, Vilnius, Lietuva
b Fizinių ir technologijos mokslų centro Medžiagų struktūrinės analizės skyrius, Vilnius, Lietuva
c Fizinių ir technologijos mokslų centro Organinės chemijos skyrius, Vilnius, Lietuva

Daugiasieniai anglies nanovamzdeliai buvo gauti etilo alkoholio cheminio garų nusodinimo (pirolizės) būdu 665 °C temperatūroje. Prie nanostruktūros pridedant kitų atomų, mūsų atveju – iridžio komponentą, susidaro defektai, kurie lemia elektrinių ir optoelektrinių savybių pokyčius. Daugiasienių nanovamzdelių susidarymas ir struktūriniai pokyčiai buvo tiriami naudojant elektroninį mikroskopą, Ramano ir energijos dispersijos spektrometrijas. Ramano ir rentgeno spindulių spektrai parodė iridžio priemaišos įnašą į sintezės procesą.


References / Nuorodos

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 6348 (1991),
https://doi.org/10.1038/354056a0
[2] S. Tennant, On two metals, found in the black powder remaining after the solution of platina, Philos. Trans. R. Soc. Lond. 94, 1776–1886 (1804),
https://doi.org/10.1098/rstl.1804.0018
[3] P.G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science 287, 5459 (2000),
https://doi.org/10.1126/science.287.5459.1801
[4] S. Ratso, I. Krussenberg, M. Vikkisk, U. Joost, E. Shulga, I. Kink, T. Kallio, and K. Tammeveski, Highly active nitrogen-doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction reaction in alkaline media, Carbon 73, 361–370 (2014),
https://doi.org/10.1016/j.carbon.2014.02.076
[5] K. Yokoyama, S. Yokoyama, Y. Sato, K. Hirano, S. Hashiguchi, K. Motomiya, H. Ohta, H. Takahashi, K. Tohji, and Y. Sato, Efficiency and long-term durability of a nitrogen-doped single-walled carbon nanotube electrocatalyst synthesized by defluronation-assisted nanotube-substitution for oxygen reduction reaction, J. Phys. Chem. A 4, 9184–9195 (2016),
https://doi.org/10.1039/C6TA02722A
[6] D.J. Li, U.N. Maiti, J. Lim, D.S. Choi, W.J. Lee, Y. Oh, G.Y. Lee, and S.O. Kim, Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction, Nano Lett. 14(3), 1228–1233 (2014),
https://doi.org/10.1021/nl404108a
[7] J.-J. Adjizian, R. Leghrib, A.A. Koos, I. Suarez-Martinez, A. Crossley, Ph. Wagner, N. Grobert, E. Lobet, and Ch.P. Ewels, Boron- and nitrogen-doped multi-wall carbon nanotubes for gas detection, Carbon 66, 662–673 (2014),
https://doi.org/10.1016/j.carbon.2013.09.064
[8] F.G. Pacheco, A.A.C. Cotta, H.F. Gorgulho, A.P. Santos, W.A.A. Macedo, and C.A. Furtado, Comparative temporal analysis of multiwalled carbon nanotube oxidation reactions: Evaluating chemical modifications on true nanotube surface, Appl. Surf. Sci. 357, 1015–1023 (2015),
https://doi.org/10.1016/j.apsusc.2015.09.054
[9] L. Brownlie and J. Shapter, Advances in carbon nanotube n-type doping: Methods, analysis and applications, Carbon 126, 257–270 (2018),
https://doi.org/10.1016/j.carbon.2017.09.107
[10] B. Bauerhenne, E.S. Zijlstra, A. Kalitsov, and M.E. Garcia, Controlling three laser-excited coherent phonon modes in boron nitride nanotubes to produce ultrashort shaped terahertz pulses: implications for memory devices, ACS Appl. Nano Mater. 1(12), 6932–6937 (2018),
https://doi.org/10.1021/acsanm.8b01716
[11] Y. Nonoguchi, K. Ohashi, R. Kanazawa, K. Ashiba, K. Hata, T. Nakagawa, Ch. Adachi, T. Tanase, and T. Kawai, Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants, Sci. Rep. 3, 3344 (2013),
https://doi.org/10.1038/srep03344
[12] R. Czerw, M. Terrones, J.C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Teklea, P.M. Ajayan, W. Blau, M. Rühle, and D.L. Carroll, Identification of electron donor states in n-doped carbon nanotubes, Nano Lett. 1(9), 457–460 (2001),
https://doi.org/10.1021/nl015549q
[13] H. Cui, X. Zhang, J. Zhang, and M.A. Mehmood, Interaction of CO and CH4 adsorption with noble metal (Rh, Pd, and Pt)-decorated N3-CNTs: A first-principles study, ACS Omega 3(12), 16892–16898 (2018),
https://doi.org/10.1021/acsomega.8b02578
[14] X. Zhang, X. Yin, J. Luo, X. Zheng, H. Wang, J. Wang, Z. Xi, X. Liao, J. Ong’achwa Machuki, K. Guo, and F. Gao, Novel hierarchical nitrogen-doped multiwalled carbon nanotubes/cellulose/nanohydroxyapatite nanocomposite as an osteoinductive scaffold for enhancing bone regeneration, ACS Biomater. Sci. Eng. 5(1), 294–3071 (2019),
https://doi.org/10.1021/acsbiomaterials.8b00908
[15] D. Maiti, X. Tong, X. Mou, and K. Yang, Carbon-based nanomaterials for biomedical applications: A recent study, Front. Pharmacol. 9, 1401 (2019),
https://doi.org/10.3389/fphar.2018.01401
[16] D.C. Higgins, D. Meza, and Z. Chen, Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells, J. Phys. Chem. C 114, 21982–21988 (2010),
https://doi.org/10.1021/jp106814j
[17] C.K. Acharya and C.H. Turner, Effect of an electric field on the adsorption of metal clusters on boron-doped carbon surfaces, J. Phys. Chem. 111, 14804–14812 (2007),
https://doi.org/10.1021/jp073643a
[18] W. Zhang, X. Zhang, L. Chen, J. Dai, Y. Ding, L. Ji, J. Zhao, M. Yan, F. Yang, Ch.-R. Chang, and S. Guo, Single-walled carbon nanotube induced optimized electron polarization of rhodium nanocrystals to develop an interface catalyst for highly efficient electrocatalysis, ACS Catal. 8(9), 8092–8099 (2018),
https://doi.org/10.1021/acscatal.8b02016
[19] Z. Wang, S. Peng, Y. Hu, L. Li, T. Yan, G. Yang, D. Ji, S. Madhavi, Z. Pan, and S. Ramakrishna, Cobalt nanoparticles encapsulated in carbon nanotube-grafted nitrogen and sulfur co-doped multichannel carbon fibers as efficient bifunctional oxygen electrocatalysts, J. Mat. Chem. 5(10), 4949–4961 (2017),
https://doi.org/10.1039/C6TA10291C
[20] R. Arrigo, M.E. Schuster, Z. Xie, Y. Yi, G. Wowsnick, L.L. Sun, K.E. Hermann, M. Friedrich, P. Kast, M. Hävecker, A. Knop-Gericke, and R. Schlögl, Nature of the N–Pd interaction in nitrogen-doped carbon nanotube catalysts, ACS Catal. 5(5), 2740–2753 (2015),
https://doi.org/10.1021/acscatal.5b00094
[21] H. Li, P. Tao, Y. Xu, X. Zhang, S. Liu, and Q. Zhao, Solution-processable high-efficiency bis(trifluoromethyl)phenyl functionalized phosphorescent neutral iridium (III) complex for greenish yellow electroluminescence, Tetrahedron Lett. 59, 1748–1751 (2018),
https://doi.org/10.1016/j.tetlet.2018.03.073
[22] W. Lei, W. Xiao, J. Li, G. Li, Z. Wu, C. Xuan, D. Luo, Y.-P. Deng, D. Wang, and Z. Chen, Highly nitrogen-doped three-dimensional carbon fibers network with superior sodium storage capacity, ACS Appl. Mater. Interfaces 9(34), 28604–28611 (2017),
https://doi.org/10.1021/acsami.7b08704
[23] W.-K. Hua, S.-H. Li, X.-F. Ma, S.-X. Zhou, Q.-F. Zhang, J.-Y. Xu, P. Shi, B.-H. Tong, M.-K. Fung, and L. Fu, Blue-to-green electrophosphorescence from iridium (III) complexes with cyclometalated pyrimidine ligands, Dyes Pigm. 150, 284–292 (2018),
https://doi.org/10.1016/j.dyepig.2017.12.020
[24] L. Gao, P. Tao, Y. Miao, W. Jia, Y. Zhao, H. Wanga, and B. Xu, Sky-blue phosphorescent organic light-emitting diode with superior performance based on novel chlorine functionalized iridium (III) complex, Tetrahedron Lett. 59, 2095–2098 (2018),
https://doi.org/10.1016/j.tetlet.2018.04.053
[25] Q. Zhao, Z. Xu, Y. Hu, F. Ding, and J. Zhang, Chemical vapor deposition synthesis of near-zigzag single-walled carbon nanotubes with stable tube-catalyst interface, Sci. Adv. 2, e1501729–e1501729 (2016),
https://doi.org/10.1126/sciadv.1501729
[26] J. Robertson, G. Zhong, S. Esconjauregui, C. Zhang, M. Fouquet, and S. Hofmann, Chemical vapor deposition of carbon nanotube forests, Phys. Status Solidi B 249(12), 2315–2322 (2012),
https://doi.org/10.1002/pssb.201200134
[27] B. Chen, C. Zhang, S. Esconjauregui, R. Xie, G. Zhong, S. Bhardwaj, C. Cepek, and J. Robertson, Carbon nanotube forests growth using catalysts from atomic layer deposition, J. Appl. Phys. 115, 144303 (2014),
https://doi.org/10.1063/1.4870951
[28] S. Dörfler, A. Meier, S. Thieme, P. Németh, H. Althues, and S. Kaskel, Wet-chemical catalyst deposition for scalable synthesis of vertical aligned carbon nanotubes on metal substrates, Chem. Phys. Let. 511, 288–293 (2011),
https://doi.org/10.1016/j.cplett.2011.06.027
[29] C. Liu and H.M. Cheng, Carbon nanotubes: controlled growth and application, Mat. Today 16, 19–28 (2013),
https://doi.org/10.1016/j.mattod.2013.01.019
[30] M. Zhang and J. Li, Carbon nanotube in different shapes, Mat. Today 12(6), 12–18 (2009),
https://doi.org/10.1016/S1369-7021(09)70176-2
[31] E.-X. Ding, Q. Zhang, N. Wei, A.T. Khan, and E.I. Kauppinen, High-performance single-walled carbon nanotube transparent conducting film fabricated by using low feeding rate of ethanol solution, R. Soc. Open Sci. 5, 180392 (2018),
https://doi.org/10.1016/j.jmst.2019.07.011
[32] Z. Zhao, Z. Yang, Y. Hu, J. Li, and X. Fan, Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups, Appl. Phys. Sci. 276, 476–481 (2013),
https://doi.org/10.1016/j.apsusc.2013.03.119
[33] A.J. Pool, S.K. Jain, and G.T. Barkema, Structural characterization of carbon nanotubes via the vibrational density of states, Carbon 118, 58–65 (2017),
https://doi.org/10.1016/j.carbon.2017.03.030
[34] N. Soin, S.S. Roy, S.C. Ray, and J.A. McLaughlin, Excitation energy dependence of Raman bands in multiwalled carbon nanotubes, J. Raman Spectrosc. 41(10), 1227–1233 (2010),
https://doi.org/10.1002/jrs.2594
[35] Z. Li, R. Little, E. Dervishi, V. Saini, Y. Xu, and A.R. Biris, Micro-Raman spectroscopy analysis of catalyst morphology for carbon nanotubes synthesis, Chem. Phys. 353, 25–31 (2008),
https://doi.org/10.1016/j.chemphys.2008.07.013
[36] S. Thanawala, D.G. Georgiev, R.J. Baird, and G. Auner, Characterization of iridium oxide thin films deposited by pulsed-direct-current reactive sputtering, Thin Solid Films 515, 7059–7065 (2007),
https://doi.org/10.1016/j.tsf.2007.02.090
[37] R.K. Kawar, P.S. Chigare, and P.S. Patil, Substrate temperature dependent structural, optical and electrical properties of spray deposited iridium oxide thin films, Appl. Surf. Sci. 206, 90–101 (2003),
https://doi.org/10.1016/S0169-4332(02)01191-1