[PDF]    https://doi.org/10.3952/physics.v62i4.4826

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 292–298 (2022)

ELECTRICAL PROPERTIES OF LLTO THICK FILMS
Edvardas Kazakevičiusa, Artūras Žalgab, Vilma Kavaliukėa, Saulius Daugėlaa, Tomas Šalkusa, and Algimantas Kežionisa
a Faculty of Physics, Vilnius University, Saulėtekio 3, 10222 Vilnius, Lithuania
b Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
Email: edvardas.kazakevicius@ff.vu.lt

Received 7 November 2022; accepted 8 November 2022

Li0.4La0.56TiO3 (LLTO) lithium-ion conducting solid electrolyte has been synthesized by aqueous sol-gel synthesis method. The free standing and alumina substrate supported thick films have been prepared from the obtained powder by tape casting. The films and bulk ceramics were studied by impedance spectroscopy in the frequency range from 10 Hz to 10 GHz. The equivalent circuit modelling was implemented in order to determine the electrical parameters of LLTO films and ceramics. The free standing LLTO films grain conductivity was found to be similar to the one of ceramic sample, while the grain boundary conductivity of the free standing film was slightly higher compared to LLTO ceramics.
Keywords: solid electrolyte, thick film, impedance spectroscopy, ionic conductivity


LLTO STORŲJŲ SLUOKSNIŲ ELEKTRINĖS SAVYBĖS
Edvardas Kazakevičiusa, Artūras Žalgab, Vilma Kavaliukėa, Saulius Daugėlaa, Tomas Šalkusa, Algimantas Kežionisa

a Vilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva
b Vilniaus universiteto Chemijos ir geomokslų fakultetas, Vilnius, Lietuva

Li0,4La0,56TiO3 (LLTO) ličio jonų laidininkai buvo sintezuoti zolių-gelių metodu. Rentgeno spindulių difrakcijos analizė parodė, kad šis junginys kristalizuodamasis sudaro perovskito struktūrą, o kitų priemaišinių fazių stebėta nebuvo. Iš gautų superjoninių miltelių sluoksnių liejimo metodu buvo pagaminti stori sluoksniai: vienas ant aliuminio oksido padėklo, kitas – be padėklo. LLTO keramika ir storieji sluoksniai buvo ištirti pilnutinės varžos spektroskopijos metodu dažnių srityje tarp 10 Hz ir 10 GHz. Rezultatams nagrinėti buvo pasitelkta ekvivalentinių grandinių analizė. Nustatyta, kad LLTO sluoksnio be padėklo kristalinis laidumas yra identiškas keramikos kristaliniam laidumui, o tarpkristalinis šio sluoksnio laidumas gautas kiek didesnis, palyginti su to paties junginio keramika.


References / Nuorodos

[1] C. Masquelier, Solid electrolytes: Lithium ions on the fast track, Nat. Mater. 10, 649–650 (2011),
https://doi.org/10.1038/nmat3105
[2] G. Jasinski, P. Jasinski, A. Nowakowski, and B. Cha­chulski, Properties of a lithium solid electrolyte gas sensor based on reaction kinetics, Meas. Sci. Technol. 17, 17–21 (2006),
https://doi.org/10.1088/0957-0233/17/1/004
[3] C. Bohnke, H. Duroy, and J.L. Fourquet, pH sensors with lithium lanthanum titanate sensitive material: applications in food industry, Sens. Actuators B Chem. 89, 240–247 (2003),
https://doi.org/10.1016/S0925-4005(02)00473-2
[4] S. Stramare, V. Thangadurai, and W. Weppner, Lithium lanthanum titanates: A review, Chem. Mater. 15(21), 3974–990 (2003),
https://doi.org/10.1021/cm0300516
[5] J.L. Fourquet, H. Duroy, and M.P. Crosnier-Lopez, Structural and microstructural studies of the series La2/3–xLi3x□1/3–2xTiO3, J. Solid State Chem. 127, 283–294 (1996),
https://doi.org/10.1006/jssc.1996.0385
[6] O. Bohnke, The fast lithium-ion conducting oxides Li3xLa2/3–xTiO3 from fundamentals to application, Solid State Ion. 179, 9–15 (2008),
https://doi.org/10.1016/j.ssi.2007.12.022
[7] J. Emery, O. Bohnké, J.L. Fourquet, J.Y. Buzaré, P. Florian, and D. Massiot, Nuclear magnetic resonance investigation of Li+-ion dynamics in the perovskite fast-ion conductor (Li3xLa2/3–x□1/3–2x)TiO3, J. Phys. Condens. Matter 14, 523–539 (2002),
https://doi.org/10.1088/0953-8984/14/3/321
[8] O. Bohnke, J. Emery, and J.L. Fourquet, Anomalies in Li+ ion dynamics observed by impedance spectroscopy and 7Li NMR in the perovskite fast ion conductor (Li3xLa2/3–x□1/3–2x)TiO3, Solid State Ion. 158(1–2), 119–132 (2003),
https://doi.org/10.1016/S0167-2738(02)00720-8
[9] C.W. Ban and G.M. Choi, The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates, Solid State Ion. 140, 285–292 (2001),
https://doi.org/10.1016/S0167-2738(01)00821-9
[10] Y. Sun, P. Guan, Y. Liu, H. Xu, S. Li, and D. Chu, Recent progress in lithium lanthanum titanate electrolyte towards all solid-state lithium ion secondary battery, Crit. Rev. Solid State Mater. Sci. 44(4), 265–282 (2019),
https://doi.org/10.1080/10408436.2018.1485551
[11] F. Aguesse, V. Roddatis, J. Roqueta, P. García, D. Per­golesi, J. Santiso, and J.A. Kilner, Micro­ structure and ionic conductivity of LLTO thin films: Influence of different substrates and excess lithium in the target, Solid State Ion. 272, 1–8 (2015),
https://doi.org/10.1016/j.ssi.2014.12.005
[12] J.K. Ahn and S.G. Yoon, Characteristics of perovskite (Li0.5La0.5)TiO3 solid electrolyte thin films grown by pulsed laser deposition for rechargeable lithium microbattery, Electrochim. Acta 50(2-3), 371–374 (2004),
https://doi.org/10.1016/j.electacta.2004.02.065
[13] O. Maqueda, F. Sauvage, L. Laffont, M.L. Martínez-Sarrión, L. Mestres, and E. Baudrin, Structural, microstructural and transport properties study of lanthanum lithium titanium perovskite thin films grown by Pulsed Laser Deposition, Thin Solid Films 516, 1651–1655 (2008),
https://doi.org/10.1016/j.tsf.2007.05.004
[14] C.L. Li, B. Zhang, and Z.W. Fu, Physical and electrochemical characterization of amorphous lithium lanthanum titanate solid electrolyte thin-film fabricated by e-beam evaporation, Thin Solid Films, 515, 1886–1892 (2006),
https://doi.org/10.1016/j.tsf.2006.07.026
[15] Y. Xiong, H. Tao, J. Zhao, H. Cheng, and X. Zhao, Effects of annealing temperature on structure and opt-electric properties of ion-conducting LLTO thin films prepared by RF magnetron sputtering, J. Alloys Compd. 509, 1910–1914 (2011),
https://doi.org/10.1016/j.jallcom.2010.10.086
[16] R. Jiménez, A. del Campo, M.L. Calzada, J. Sanz, S.D. Kobylianska, S.O. Solopan, and A.G. Be­lous, Lithium La0.57Li0.33TiO3 perovskite and Li1.3Al0.3Ti1.7(PO4)3 Li–NASICON supported thick films electrolytes prepared by tape casting method, J. Electrochem. Soc. 163, A1653–A1659 (2016),
https://doi.org/10.1149/2.0881608jes
[17] F. Schröckert, N. Schiffmann, E.C. Bucharsky, K.G. Schell, and M.J. Hoffmann, Tape casted thin films of solid electrolyte Lithium-Lanthanum-Titanate, Solid State Ion. 328, 25–29 (2018),
https://doi.org/10.1016/j.ssi.2018.10.028
[18] A. Kežionis, E. Kazakevičius, S. Kazlauskas, and A. Žalga, Metal-like temperature dependent conductivity in fast Li+ ionic conductor Lithium Lanthanum Titanate, Solid State Ion. 342, 115050 (2019),
https://doi.org/10.1016/j.ssi.2019.115060
[19] A. Kezionis, S. Kazlauskas, D. Petrulionis, and A.F. Orliukas, Broadband method for the determination of small sample's electrical and dielectric properties at high temperatures, IEEE Trans. Microw. Theory Tech. 62(10), 2456–2461 (2014),
https://doi.org/10.1109/TMTT.2014.2350963
[20] J.R. Sandifer and R.P. Buck, Impedance characteristics of ion selective glass electrodes, J. Anal. Chem. 56, 385–398 (1974),
https://doi.org/10.1016/S0022-0728(74)80039-2
[21] J.R. Macdonald, New aspects of some small-signal ac frequency response functions, Solid State Ion. 15, 159–161 (1985),
https://doi.org/10.1016/0167-2738(85)90095-5
[22] R.L. Hurt and J.R. Macdonald, Distributed circuit elements in impedance spectroscopy: A unified treatment of conductive and dielectric systems, Solid State Ion. 20, 111–124 (1986),
https://doi.org/10.1016/0167-2738(86)90018-4
[23] J.R. Macdonald, Note on the parameterization of the constant-phase admittance element, Solid State Ion. 13, 147–149 (1984),
https://doi.org/10.1016/0167-2738(84)90049-3
[24] S. Havriliak and S. Negami, A complex plane analysis of α-dispersions in some polymer systems, J Polym. Sci. Pol. Sym. 14(1), 99–117 (1966),
https://doi.org/10.1002/polc.5070140111
[25] J.C. Wang and J.B. Bates, Non-Debye dielectric response and distribution of activation energies, Solid State Ion. 50, 75–86 (1992),
https://doi.org/10.1016/0167-2738(92)90039-R
[26] J.R. Macdonald and J.C. Wang, The response of systems with exponential distributions of activation energies for two classes of material temperature behavior, Solid State Ion. 60, 319–333 (1993),
https://doi.org/10.1016/0167-2738(93)90010-Z
[27] J.R. Dygas, Dielectric function of ionic conductors studied by impedance spectroscopy, Solid State Ion. 176(2), 2065–2078 (2005),
https://doi.org/10.1016/j.ssi.2004.11.023
[28] A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed. (Wiley, 2000),
https://www.wiley.com/en-us/Electrochemical+Methods:+Fundamentals+and+Applications,+2nd+Edition-p-9780471043720