References /
          Nuorodos
        
        [1] C. Masquelier, Solid electrolytes: Lithium ions on the fast
        track, Nat. Mater. 
10, 649–650 (2011), 
        
https://doi.org/10.1038/nmat3105
        [2] G. Jasinski, P. Jasinski, A. Nowakowski, and B. Chachulski,
        Properties of a lithium solid electrolyte gas sensor based on
        reaction kinetics, Meas. Sci. Technol. 
17, 17–21 (2006),
        
        
https://doi.org/10.1088/0957-0233/17/1/004
        [3] C. Bohnke, H. Duroy, and J.L. Fourquet, pH sensors with
        lithium lanthanum titanate sensitive material: applications in
        food industry, Sens. Actuators B Chem. 
89, 240–247
        (2003), 
        
https://doi.org/10.1016/S0925-4005(02)00473-2
        [4] S. Stramare, V. Thangadurai, and W. Weppner, Lithium
        lanthanum titanates: A review, Chem. Mater. 
15(21),
        3974–990 (2003), 
        
https://doi.org/10.1021/cm0300516
        [5] J.L. Fourquet, H. Duroy, and M.P. Crosnier-Lopez, Structural
        and microstructural studies of the series La
2/3–xLi
3x□1/3–2xTiO
3,
        J. Solid State Chem. 
127, 283–294 (1996), 
        
https://doi.org/10.1006/jssc.1996.0385
        [6] O. Bohnke, The fast lithium-ion conducting oxides Li
3xLa
2/3–xTiO
3
        from fundamentals to application, Solid State Ion. 
179,
        9–15 (2008), 
        
https://doi.org/10.1016/j.ssi.2007.12.022
        [7] J. Emery, O. Bohnké, J.L. Fourquet, J.Y. Buzaré, P. Florian,
        and D. Massiot, Nuclear magnetic resonance investigation of Li
+-ion
        dynamics in the perovskite fast-ion conductor (Li
3xLa
2/3–x□1/3–2x)TiO
3,
        J. Phys. Condens. Matter 
14, 523–539 (2002), 
        
https://doi.org/10.1088/0953-8984/14/3/321
        [8] O. Bohnke, J. Emery, and J.L. Fourquet, Anomalies in Li
+
        ion dynamics observed by impedance spectroscopy and 
7Li
        NMR in the perovskite fast ion conductor (Li
3xLa
2/3–x□1/3–2x)TiO
3,
        Solid State Ion. 
158(1–2), 119–132 (2003), 
        
https://doi.org/10.1016/S0167-2738(02)00720-8
        [9] C.W. Ban and G.M. Choi, The effect of sintering on the grain
        boundary conductivity of lithium lanthanum titanates, Solid
        State Ion. 
140, 285–292 (2001), 
        
https://doi.org/10.1016/S0167-2738(01)00821-9
        [10] Y. Sun, P. Guan, Y. Liu, H. Xu, S. Li, and D. Chu, Recent
        progress in lithium lanthanum titanate electrolyte towards all
        solid-state lithium ion secondary battery, Crit. Rev. Solid
        State Mater. Sci. 
44(4), 265–282 (2019),
        
https://doi.org/10.1080/10408436.2018.1485551
        [11] F. Aguesse, V. Roddatis, J. Roqueta, P. García, D.
        Pergolesi, J. Santiso, and J.A. Kilner, Micro structure and
        ionic conductivity of LLTO thin films: Influence of different
        substrates and excess lithium in the target, Solid State Ion. 
272,
        1–8 (2015), 
        
https://doi.org/10.1016/j.ssi.2014.12.005
        [12] J.K. Ahn and S.G. Yoon, Characteristics of perovskite (Li
0.5La
0.5)TiO
3
        solid electrolyte thin films grown by pulsed laser deposition
        for rechargeable lithium microbattery, Electrochim. Acta 
50(2-3),
        371–374 (2004), 
        
https://doi.org/10.1016/j.electacta.2004.02.065
        [13] O. Maqueda, F. Sauvage, L. Laffont, M.L. Martínez-Sarrión,
        L. Mestres, and E. Baudrin, Structural, microstructural and
        transport properties study of lanthanum lithium titanium
        perovskite thin films grown by Pulsed Laser Deposition, Thin
        Solid Films 
516, 1651–1655 (2008), 
        
https://doi.org/10.1016/j.tsf.2007.05.004
        [14] C.L. Li, B. Zhang, and Z.W. Fu, Physical and
        electrochemical characterization of amorphous lithium lanthanum
        titanate solid electrolyte thin-film fabricated by e-beam
        evaporation, Thin Solid Films, 
515, 1886–1892 (2006), 
        
https://doi.org/10.1016/j.tsf.2006.07.026
        [15] Y. Xiong, H. Tao, J. Zhao, H. Cheng, and X. Zhao, Effects
        of annealing temperature on structure and opt-electric
        properties of ion-conducting LLTO thin films prepared by RF
        magnetron sputtering, J. Alloys Compd. 
509, 1910–1914
        (2011), 
        
https://doi.org/10.1016/j.jallcom.2010.10.086
        [16] R. Jiménez, A. del Campo, M.L. Calzada, J. Sanz, S.D.
        Kobylianska, S.O. Solopan, and A.G. Belous, Lithium La
0.57Li
0.33TiO
3
        perovskite and Li
1.3Al
0.3Ti
1.7(PO
4)
3
        Li–NASICON supported thick films electrolytes prepared by tape
        casting method, J. Electrochem. Soc. 
163, A1653–A1659
        (2016), 
        
https://doi.org/10.1149/2.0881608jes
        [17] F. Schröckert, N. Schiffmann, E.C. Bucharsky, K.G. Schell,
        and M.J. Hoffmann, Tape casted thin films of solid electrolyte
        Lithium-Lanthanum-Titanate, Solid State Ion. 
328, 25–29
        (2018), 
        
https://doi.org/10.1016/j.ssi.2018.10.028
        [18] A. Kežionis, E. Kazakevičius, S. Kazlauskas, and A. Žalga,
        Metal-like temperature dependent conductivity in fast Li
+
        ionic conductor Lithium Lanthanum Titanate, Solid State Ion. 
342,
        115050 (2019), 
        
https://doi.org/10.1016/j.ssi.2019.115060
        [19] A. Kezionis, S. Kazlauskas, D. Petrulionis, and A.F.
        Orliukas, Broadband method for the determination of small
        sample's electrical and dielectric properties at high
        temperatures, IEEE Trans. Microw. Theory Tech. 
62(10),
        2456–2461 (2014), 
        
https://doi.org/10.1109/TMTT.2014.2350963
        [20] J.R. Sandifer and R.P. Buck, Impedance characteristics of
        ion selective glass electrodes, J. Anal. Chem. 
56,
        385–398 (1974), 
        
https://doi.org/10.1016/S0022-0728(74)80039-2
        [21] J.R. Macdonald, New aspects of some small-signal ac
        frequency response functions, Solid State Ion. 
15,
        159–161 (1985), 
        
https://doi.org/10.1016/0167-2738(85)90095-5
        [22] R.L. Hurt and J.R. Macdonald, Distributed circuit elements
        in impedance spectroscopy: A unified treatment of conductive and
        dielectric systems, Solid State Ion. 
20, 111–124 (1986),
        
        
https://doi.org/10.1016/0167-2738(86)90018-4
        [23] J.R. Macdonald, Note on the parameterization of the
        constant-phase admittance element, Solid State Ion. 
13,
        147–149 (1984), 
        
https://doi.org/10.1016/0167-2738(84)90049-3
        [24] S. Havriliak and S. Negami, A complex plane analysis of
        α-dispersions in some polymer systems, J Polym. Sci. Pol. Sym. 
14(1),
        99–117 (1966),
        
https://doi.org/10.1002/polc.5070140111
        [25] J.C. Wang and J.B. Bates, Non-Debye dielectric response and
        distribution of activation energies, Solid State Ion. 
50,
        75–86 (1992), 
        
https://doi.org/10.1016/0167-2738(92)90039-R
        [26] J.R. Macdonald and J.C. Wang, The response of systems with
        exponential distributions of activation energies for two classes
        of material temperature behavior, Solid State Ion. 
60,
        319–333 (1993), 
        
https://doi.org/10.1016/0167-2738(93)90010-Z
        [27] J.R. Dygas, Dielectric function of ionic conductors studied
        by impedance spectroscopy, Solid State Ion. 
176(2),
        2065–2078 (2005), 
        
https://doi.org/10.1016/j.ssi.2004.11.023
        [28] A.J. Bard and L.R. Faulkner, 
Electrochemical Methods:
          Fundamentals and Applications, 2nd ed. (Wiley, 2000), 
        
https://www.wiley.com/en-us/Electrochemical+Methods:+Fundamentals+and+Applications,+2nd+Edition-p-9780471043720