[PDF]    https://doi.org/10.3952/physics.2023.63.1.3

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 15–24 (2023)

PHYSICAL-AND-CHEMICAL PROCESSES AT THE INTERFACES OF (Cu–Ni–Mn–Fe)/(W–C) COMPOSITES
Olena V. Sukhova
Department of Engineering Mechanics and Energy Systems, Institute of Transport Systems and Technologies, National Academy of Sciences of Ukraine, 5 Pisarzhevsky St., 49005 Dnipro, Ukraine
Email: sukhovaya@ukr.net

Received 16 July 2022; accepted 18 January 2023

The spontaneous infiltration method for fabricating composites was used, in which molten Cu–Ni–Mn–Fe binders penetrated W–C filler particles due to capillary forces. The metal matrix composites thus obtained were characterized for phase composition, microstructure, porosity and microhardness. All composites were studied in their as-prepared condition with further annealing at 900°С for 60 and 750 h. It was shown that the mechanism based on the dissolution/diffusion bonding of the particulate/matrix interface was in agreement with the results of this study. The interfacial reactions provided a driving force for wetting but did not give rise to unwanted phases that could degrade the properties of the composite materials. From the EDX measurements it was concluded that mainly Fe atoms diffused from the Cu–Ni–Mn–Fe binders into the WC phase of the eutectic (WC+W2C) filler. Dissolution of this phase resulted in the appearance of W2C layer at the interface. Annealing at 900°С significantly promoted the interfacial reaction especially during the first 60 h of heat treatment. The degree of the reaction between the molten Cu–Ni–Mn–Fe alloys and W–C particulate could be limited by controlling the iron content of the binders to obtain an optimal interface.
Keywords:metal matrix composites, spontaneous infiltration, interfacial reactions, precipitation-hardening matrix, microhardness

FIZIKINIAI IR CHEMINIAI VYKSMAI (Cu–Ni–Mn–Fe)/(W–C) KOMPOZITŲ SANDŪROJE
Olena V. Sukhova

Olesio Gončiaro vardo Dnipro nacionalinio universiteto Fizikos, elektronikos ir kompiuterių sistemų fakultetas, Dnipras, Ukraina


References / Nuorodos

[1] N. Chawla and K.K. Chawla, Metal Matrix Composites (Springer, New York, 2013),
https://doi.org/10.1007/978-1-4614-9548-2
[2] S. Suresh, A. Mortensen, and A. Needleman, Fundamentals of Metal-Matrix Composites (Butterworth-Heinemann, Stoneham, 2013)
[3] K.U. Kainer, in: Metal Matrix Composites. Custom-made Materials for Automotive and Aerospace Engineering, ed. K.U. Kainer (Wiley-VCH Verlag, Weinheim, 2006) pp. 1–54.
https://doi.org/10.1002/3527608117.ch1
[4] Y.G. Chabak, V.I. Fedun, K. Shimizu, V.G. Efremenko, and V.I. Zurnadzhy, Phase-structural composition of coating obtained by pulsed plasma treatment using eroded cathode of T1 high speed steel, Probl. At. Sci. Technol. 104(4), 100–106 (2016)
[5] J.B. Ferguson, B.F. Schultz, and P.K. Rohatgi, Self-healing metals and metal matrix composites, JOM 66(6), 866–871 (2014),
https://doi.org/10.1007/s11837-014-0912-4
[6] Z.A. Duryagina, S.A. Bespalov, A.K. Borysyuk, and V.Ya. Pidkova, Magnetometric analysis of surface layers of 12X18H10T steel after ion-beam nitriding, Metallofiz. Noveishie Tekhnol. 33(5), 615–622 (2011),
https://doi.org/10.1007/s11003-012-9514-x
[7] Y.L. Ivanytskyj, T.M. Lenkovskiy, Y.V. Molkov, V.V. Kulyk, and Z.A. Duriagina, Influence of 65G steel microstructure on crack faces friction factor under mode II fatigue fracture, Arch. Mater. Sci. Eng. 82(2), 49–56 (2016),
https://doi.org/10.5604/01.3001.0009.7103
[8] S.I. Ryabtsev, V.А. Polonskyy, and О.V. Sukhova, Structure and corrosion of quasicrystalline cast alloys and Al–Cu–Fe film coatings, Mater. Sci. 56(2), 263–272 (2020),
https://doi.org/10.1007/s11003-020-00428-8
[9] I.M. Spiridonova, E.V. Sukhovaya, V.F. Butenko, А.P. Zhudra, А.I. Litvinenko, and А.I. Belyi, Structure and properties of boron-bearing iron granules for composites, Powder Metall. Met. Ceram. 32(2), 139–141 (1993),
https://doi.org/10.1007/BF00560039
[10] R. Tkachenko, Z. Duriagina, I. Lemishka, I. Izonin, and A. Trostianchyn, Development of machine learning method of titanium alloy properties identification in additive technologies, East.-Eur. J. Enterp. Technol. 3(12–93), 23–31 (2018),
https://doi.org/10.15587/1729-4061.2018.134319
[11] О.V. Sukhova, Structure and properties of Fe–B–C powders alloyed with Cr, V, Mo or Nb for plasma-sprayed coatings, Probl. At. Sci. Technol. 4(128), 77–83 (2020),
https://doi.org/10.46813/2020-128-077
[12] Y. Chabak, V. Efremenko, V. Zurnadzhy, V. Puchý, I. Petryshynets, B. Efremenko, V. Fedun, K. Shimizu, I. Bogomol, V. Kulyk, and D. Jakubéczyová, Structural and tribological studies of “(TiC + WC)/hardened steel” PMMC coating deposited by air pulsed plasma, Metals 12, 218 (2022),
https://doi.org/10.3390/met12020218
[13] P.M. Brune, Processing and Properties of WC-based Cu–Ni–Mn–Zn Metal Matrix Composites Produced via Pressureless Infiltration, Masters Theses, 7850 (2017),
https://scholarsmine.mst.edu/masters_theses/7850
[14] Е.V. Sukhovaya, Structural approach to the development of wear-resistant composite materials, J. Superhard Mater. 35(5), 277–283 (2013),
https://doi.org/10.3103/S106345761305002X
[15] О.V. Sukhova and Yu.V. Syrovatko, New metallic materials and synthetic metals, Metallofiz. Noveishie Tekhnol. 41(9), 1171–1185 (2019),
https://doi.org/10.15407/mfint.41.09.1171
[16] I. Daoud, Dj. Miroud, and R. Yamanoglu, Microstructure characterization and quantitative analysis of copper alloy matrix composites reinforced with WC-xNi powders prepared by spontaneous infiltration, J. Min. Metall. B 54(2), 169–177 (2018),
https://doi.org/10.2298/JMMB171225005D
[17] O.V. Sukhova, V.A. Polonskyy, and K.V. Ustinova, Corrosion-electrochemical properties of quasicrystalline Al–Cu–Fe–(Si,B) and Al–Ni–Fe alloys in NaCl solution, Vopr. Khimii Khimicheskoi Tekhnologii 124(3), 46–52 (2019) [in Ukrainian],
https://doi.org/10.32434/0321-4095-2019-124-3-46-52
[18] B.O. Trembach, M.G. Sukov, V.A. Vynar, I.O. Trembach, V.V. Subbotinа, O.Yu. Rebrov, O.M. Rebrova, and V.I. Zakiev, Effect of incomplete replacement of Cr for Cu in the deposited alloy of Fe–C–Cr–B–Ti alloying system with a medium boron content (0.5% wt.) on its corrosion resistance, Metallofiz. Noveishie Tekhnol. 44(4), 493–513 (2022),
https://doi.org/10.15407/mfint.44.04.0493
[19] R. Babilas, A. Bajorek, M. Spilka, A. Radon, and W. Lonski, Structure and corrosion resistance of Al–Cu–Fe alloys, Prog. Nat. Sci. 30(3), 393–401 (2020),
https://doi.org/10.1016/j.pnsc.2020.06.002
[20] О.V. Sukhova, The effect of carbon content and cooling rate on the structure of boron-rich Fe–B–С alloys, Phys. Chem. Solid State 21(2), 355–360 (2020),
https://doi.org/10.15330/pcss.21.2.355-360
[21] H. Wang, Z.-H. Zhang, Z.-Y. Hu, Q. Song, S.-P. Yin, Z. Kang, and S.-L. Li, Improvement of interfacial interaction and mechanical properties in copper matrix composites reinforced with copper coated carbon nanotubes, Mater. Sci. Eng. A 715, 163–173 (2018),
https://doi.org/10.1016/j.msea.2018.01.005
[22] O.V. Sukhova, V.A. Polonskyy, and K.V. Ustinova, Structure formation and corrosion behaviour of quasicrystalline Al–Ni–Fe alloys, Phys. Chem. Solid State 18(2), 222–227 (2017),
https://doi.org/10.15330/pcss.18.2.222-227
[23] K. Młynarek-Żak, A. Wierzbicka-Miernik, M. Kądziołka-Gaweł, T. Czeppe, A. Radoń, and R. Babilas, Electrochemical characterization of rapidly solidified Al–(Cr,Cu,Ni,Y,Zr)–Fe alloys, Electrochim. Acta 409, 139836 (2022),
https://doi.org/10.1016/j.electacta.2022.139836
[24] О.V. Sukhova and V.А. Polonskyy, Structure and corrosion of quasicrystalline cast Al–Co–Ni and Al–Fe–Ni alloys in aqueous NaCl solution, East Eur. J. Phys. 3, 5–10 (2020),
https://doi.org/10.26565/2312-4334-2020-3-01
[25] J. Liu, S. Yang, W. Xia, X. Jiang, and Ch. Gui, Microstructure and wear resistance performance of Cu–Ni–Mn alloy based hardfacing coatings reinforced by WC particles, J. Alloys Compd. 654, 63–70 (2015),
https://doi.org/10.1016/j.jallcom.2015.09.130
[26] A.V. Muller, D. Ewert, A. Galatanu, M. Milwich, R. Neu, J.Y. Pastor. U. Siefken, E. Tejado, and J.H. You, Melt infiltrated tungsten–copper composites as advanced heat sink materials for plasma facing components of future nuclear fusion devices, Fusion Eng. Des. 124, 455–459 (2017),
https://doi.org/10.1016/j.fusengdes.2017.01.042
[27] V. Jankauskas, M. Antonov, V. Varnauskas, R. Skirkus, and D. Goljandin, Effect of WC grain size and content on low stress abrasive wear of manual arc welded hardfacing with low-carbon or stainless steel matrix, Wear 328–329, 378–390 (2015),
https://doi.org/10.1016/j.wear.2015.02.063
[28] M. Jäcklein, A. Pfaff, and K. Hoschke, Developing tungsten-filled metal matrix composite materials using laser powder bed fusion, Appl. Sci. 10(24), 8869 (2020),
https://doi.org/10.3390/app10248869
[29] Copper Alloys: Preparation, Properties and Applications, eds. M. Naboka and J. Giordano, (Nova Science Publishers Inc., Hauppauge, N. Y., 2011)
[30] M. Schutze, R. Feser, and R. Bender, Corrosion Resistance of Copper and Copper Alloys (Wiley-VCH, Weinheim, 2011).
https://www.wiley-vch.de/
[31] B. Trembach, A. Grin, V. Subbotina, V. Vynar, S. Knyazev, V. Vakiev, I. Trembach, and O. Kabatskyi, Effect of exothermic addition (CuO–Al) on the structure, mechanical properties and abrasive wear resistance of the deposited metal during self-shielded flux-cored arc welding, Tribol. Ind. 43(3), 452–464 (2021),
https://doi.org/10.24874/ti.1104.05.21.07
[32] О.V. Sukhova, Solubility of Cu, Ni, Mn in boron-rich Fe–B–C alloys, Phys. Chem. Solid State 22(1), 110–116 (2021),
https://doi.org/10.15330/pcss.22.1.110-116
[33] P. Sakiewicz, R. Nowosielski, and R. Babilas, Production aspects of inhomogeneous hot deformation in as-cast CuNi25 alloy, Indian J. Eng. Mater. Sci. 22(4), 389–398 (2015),
[PDF]
[34] R. Wang, Y. Fu, G. Xie, Z. Hao, S. Zhang, and X. Liu, The microstructure and mechanical properties of Cu–20Ni–20Mn alloy fabricated by a compact preparation process, Metals 10, 1528–1537 (2020),
https://doi.org/10.3390/met10111528
[35] B. Trembach, A. Grin, N. Makarenko, S. Zharikov, I. Trembach, and O. Markov, Influence of the core filler composition on the recovery of alloying elements during the self-shielded flux-cored arc welding, J. Mater. Res. Technol. 9(5), 10520–10528 (2020),
https://doi.org/10.1016/j.jmrt.2020.07.052
[36] S. Sharma, X.N. Dong, P. Wei, and C. Long, Electro-chemical deposited Cu–Ni binary and Cu–Ni–Mn ternary alloys from sulphate bath for anti-corrosive coating applications in brine environment: Effect of corrosion behaviour, polarization studies, morphological and structural characterizations, Key Eng. Mater. 837, 102–108 (2020),
https://doi.org/10.4028/www.scientific.net/KEM.837.102
[37] О.V. Sukhova, The effect of iron on precipitation hardening in the Cu–Ni–Mn alloys, Phys. Chem. Solid State 22(3), 487–493 (2021),
https://doi.org/10.15330/pcss.22.3.487-493
[38] H. Kang, Z. Yang, X. Yang, J. Li, W. He, Z. Chen, E. Guo, L.-D. Zhao, and T. Wang, Preparing bulk Cu–Ni–Mn based thermoelectric alloys and synergistically improving their thermoelectric and mechanical properties using nanotwins and nanoprecipitates, Mater. Today Phys. 17, 100332 (2020),
https://doi.org/10.1016/j.mtphys.2020.100332
[39] W. Xie, Q. Wang, X. Mi, G. Xie, D. Liu, X. Gao, and Y. Li, Microstructure evolution and properties of Cu–20Ni–20Mn alloy during aging process, Trans. Nonferrous Met. Soc. China 25(10), 3247–3251 (2015),
https://doi.org/10.1016/S1003-6326(15)63960-7
[40] J. Zou, L. Shi, H. Shi, Q. Feng, and S. Liang, Study on aging strengthening and nano precipitates of Cu–Ni–Mn–Fe alloy, Mater. Res. Express 7, 056504 (2020),
https://doi.org/10.1088/2053-1591/ab8b1d
[41] S. Reeh, D. Music, M. Ekholm, I. Abrikosov, and J.M. Schneider, Elastic properties of fcc Fe–Mn–X(X=Cr, Co, Ni, Cu) alloys from first-principles calculations, Phys. Rev. B. 87, 224103 (2013),
https://doi.org/10.1103/PhysRevB.87.224103
[42] S. Hocker, P. Binkele, and S. Schmauder, Precipitation in α-Fe based Fe–Cu–Ni–Mn-alloys: behaviour of Ni and Mn modelled by ab initio and kinetic Monte Carlo simulations, Appl. Phys. Res. 115(2), 679–687 (2014),
https://doi.org/10.1007/s00339-013-7850-9
[43] R.Y. Lin, Composite interfacial reactions, JOM 45, 20 (1993),
https://doi.org/10.1007/BF03222343
[44] A.I. Mertens and J. Lecomte-Beckers, in: New Trends in 3D Printing, ed. I.V. Shishkovsky (Intech, Liege, 2016) pp. 187–213,
https://doi.org/10.5772/63045
[45] Yu.M. Ivashchenko and V.N. Eremenko, Basics of Precise Measurement of Surface Energy by Sessile Drop Method (Naukova dumka, Kyiv, 1972) [in Russian]
[46] C.J. Smithells, Metal Reference Book (Butterworth & Co., London-Boston, 1976)
[47] T.Ya. Kosolapova, Properties, Preparation and Application of Refractory Compounds (Metallurgy, Moscow, 1986) [in Russian]
[48] L.N. Larikov and Yu.F. Yurchenko, Thermal Properties of Metals and Alloys (Naukova dumka, Kyiv, 1985) [in Russian]