[PDF]    https://doi.org/10.3952/physics.2023.63.2.1

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 47–55 (2023)

THE IMPACT OF GROUP VELOCITY DISPERSION ON FEMTOSECOND LASER FILAMENTATION WITH HIGHER-ORDER KERR EFFECT AT DIFFERENT ATMOSPHERIC PRESSURES
Yece Qiana, Le Wangb, Guoping Shia, Yufeng Zhanga, Zuo Suna, and Yujuan Linc
a School of Mechanical and Electrical Engineering, Chizhou University, 247000 Chizhou, China
b School of Electrical and Electronic Engineering, Anhui Science and Technology University, 233100 Chuzhou, China
c State Grid Anhui Electric Power Co., LTD., 230061 Hefei, Anhui Province, China
Email: wangle@ahstu.edu.cn

Received 23 March 2023; revised 15 April 2023; accepted 17 April 2023

The impact of group velocity dispersion (GVD) on femtosecond laser filamentation with the higher-order Kerr effect is studied at different atmospheric pressures. The results show that GVD makes the collapse distance to not meet the semi-empirical formula proposed by Dawes and Marburger, suppresses multiple focusing and splitting in time during the propagation process, and reduces the length of filament. In addition, we also compared the results with those considering only the third-order Kerr effect. This provides some information for the study of whether the defocus effect in the femtosecond laser filamentation is the higher-order Kerr effect or the plasma effect.
Keywords: femtosecond, filamentation, GVD, higher-order Kerr effect, pressure
PACS: 42.55.Ah, 42.65.-k

GRUPINIO GREIČIO DISPERSIJOS ĮTAKA FEMTOSEKUNDINIO LAZERIO SU AUKŠTESNIOSIOS EILĖS KERO EFEKTU FILAMENTACIJAI ĮVAIRAUS SLĖGIO ATMOSFEROJE
Yece Qiana, Le Wangb, Guoping Shia, Yufeng Zhanga, Zuo Suna, Yujuan Linc

a Čidžou universitetas, Čidžou, Kinija
b Anhujaus mokslo ir technologijų universitetas, Čudžou, Kinija
c State Grid Anhui Electric Power Co., LTD., Hefėjus, Anhujaus provincija, Kinija


References / Nuorodos

[1] A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Self-channeling of high-peak-power femtosecond laser pulses in air, Opt. Lett. 20, 73–75 (1995),
https://doi.org/10.1364/OL.20.000073
[2] E.T.J. Nibbering, P.F. Curley, G. Grillon, B.S. Prade, M.A. Franco, F. Salin, and A. Mysyrowicz, Conical emission from self-guided femtosecond pulses in air, Opt. Lett. 21, 62–64 (1996),
https://doi.org/10.1364/OL.21.000062
[3] B. La Fontaine, F. Vidal, Z. Jiang, C.Y. Chien, D. Comtois, A. Desparois, T.W. Johnston, J.-C. Kieffer, and H. Pépin, Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air, Phys. Plasmas 6, 1615–1621 (1999),
https://doi.org/10.1063/1.873715
[4] A. Couairon and L. Bergé, Modeling the filamentation of ultra-short pulses in ionizing media, Phys. Plasmas 7, 193–209 (2000),
https://doi.org/10.1063/1.873794
[5] A. Couairon, S. Tzortzakis, L. Bergé, M. Franco, B. Prade, and A. Mysyrowicz, Infrared femtosecond light filaments in air: simulations and experiments, J. Opt. Soc. Am. B 19, 1117–1131 (2002),
https://doi.org/10.1364/JOSAB.19.001117
[6] V.P. Kandidov, O.G. Kosareva, I.S. Golubtsov, A. Liu, N. Akozbek, C.M. Bowden, and S.L. Chin, Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media, Appl. Phys. B 77, 149–165 (2003),
https://doi.org/10.1007/s00340-003-1214-7
[7] S. Skupin, L. Bergé, U. Peschel, F. Lederer, and R. Sauerbrey, Filamentation of femtosecond light pulses in the air: turbulent cells versus long-range clusters, Phys. Rev. E 70, 046602 (2004),
https://doi.org/10.1103/PhysRevE.70.046602
[8] T. Francis, L. Weiwei, T.S. Patrick, B. Andreas, and C. Seeleang, Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing, Phys. Rev. E 74, 036406 (2006),
https://doi.org/10.1103/PhysRevE.74.036406
[9] V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Measurement of high order Kerr refractive index of major air components, Opt. Express 17, 13429–13434 (2009),
https://doi.org/10.1364/OE.17.013429
[10] V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Measurement of high order Kerr refractive index of major air components: erratum, Opt. Express 18, 3011–3012 (2010),
https://doi.org/10.1364/OE.18.003011
[11] P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Higher-order Kerr terms allow ionization-free filamentation in gases, Phys. Rev. Lett. 104, 103903 (2010),
https://doi.org/10.1103/PhysRevLett.104.103903
[12] W. Haitao, F. Chengyu, Z. Pengfei, Q. Chunhong, Z. Jinghui, and M. Huimin, Light filaments with higher-order Kerr effect, Opt. Express 18, 24301–24306 (2010),
https://doi.org/10.1364/OE.18.024301
[13] V. Loriot, P. Béjot, W. Ettoumi, Y. Petit, J. Kasparian, S. Heninc, E. Hertz, B. Lavorel, O. Faucher, and J.P. Wolf, On negative higher-order Kerr effect and filamentation, Laser Phys. 21, 1319–1328 (2010),
https://doi.org/10.1134/S1054660X11130196
[14] H. Wang, C. Fan, P. Zhang, C. Qiao, and H. Ma, Dynamics of femtosecond filamentation with higher-order Kerr response, J. Opt. Soc. Am. B 28, 2081–2086 (2011),
https://doi.org/10.1364/JOSAB.28.002081
[15] P. Béjot, E. Hertz, J. Kasparian, B. Lavorel, J.P. Wolf, and O. Faucher, Transition from plasma-driven to Kerr-driven laser filamentation, Phys. Rev. Lett. 106, 243902 (2011),
https://doi.org/10.1103/PhysRevLett.106.243902
[16] Z.X. Wang, C. Zhang, J.S. Liu, R. Li, and Z. Xu, Femtosecond filamentation in argon and higher order nonlinearities, Opt. Lett. 36, 2336–2338 (2011),
https://doi.org/10.1364/OL.36.002336
[17] M. Petrarca, Y. Petit, S. Henin, R. Delagrange, P. Béjot, and J. Kasparian, Higher-order Kerr improve quantitative modeling of laser filamentation, Opt. Lett. 37, 4347–4349 (2012),
https://doi.org/10.1364/OL.37.004347
[18] L. Wang and W. Lin, The impact of the varied nonlinear refractive index of higher-order Kerr effect on the laser pulse's propagation, Optik 126, 5387–5391 (2015),
https://doi.org/10.1016/j.ijleo.2015.08.272
[19] L. Wang, C. Ma, X. Qi, and W. Lin, The impact of the retarded Kerr effect on the laser pulses' propagation in air, Eur. Phys. J. D 69, 72 (2015),
https://doi.org/10.1140/epjd/e2015-50874-4
[20] L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.P. Wolfet, Ultrashort filaments of light in weakly ionized, optically transparent media, Rep. Prog. Phys. 70, 1633–1713 (2007),
https://doi.org/10.1088/0034-4885/70/10/R03
[21] S. Minardi, A. Gopal, A. Couairon, G. Tamošauskas, R. Piskarskas, A. Dubietis, and P.D. Trapani, Accurate retrieval of pulse-splitting dynamics of a femtosecond filament in water by time-resolved shadowgraph, Opt. Lett. 34, 3020–3022 (2009),
https://doi.org/10.1364/OL.34.003020
[22] A. Couairon and A. Mysyrowicz, Femtosecond filamentation in transparent media, Phys. Reports 441, 47–189 (2007),
https://doi.org/10.1016/j.physrep.2006.12.005
[23] S. Champeaux and L. Bergé, Long-range multifilamentation of femtosecond laser pulses versus air pressure, Opt. Lett. 31, 1301–1303 (2006),
https://doi.org/10.1364/OL.31.001301
[24] H. Wang, W. Jia, and C. Fan, Effect of geometrical focusing on femtosecond laser filamentation with low pressure, Eur. Phys. J. D 70, 50 (2016),
https://doi.org/10.1140/epjd/e2016-60564-4
[25] X. Qi, C. Ma, and W. Lin, Pressure effects on the femtosecond laser filamentation, Opt. Commun. 358, 126–131 (2016),
https://doi.org/10.1016/j.optcom.2015.09.011
[26] L. Wang, Q. Zhao, W.Y. Sun, and L. Wang, Influence of the retarded Kerr effect on an intense femtosecond laser propagating in the atmosphere at different pressures, J. Opt. Technol. 88, 364–367 (2021),
https://doi.org/10.1364/JOT.88.000364
[27] H. Zhang, Y. Zhang, S. Lin, Y.F. Zhang, A.M. Chen, Y.F. Jiang, and S.Y. Li, Influence of pressure on spectral broadening of femtosecond laser pulses in air, Phys. Plasmas 28, 043302 (2021),
https://doi.org/10.1063/5.0042998
[28] S.Y. Li, F.M. Guo, Y. Song, A.M. Chen, Y.J. Yang, and M.X. Jin, Influence of group-velocity-dispersion effects on the propagation of femtosecond laser pulses in air at different pressures, Phys. Rev. A 89, 023809 (2014),
https://doi.org/10.1103/PhysRevA.89.023809
[29] T.T. Xi, X. Lu, and Z. Zhang, Interaction of light filaments generated by femtosecond laser pulses in air, Phys. Rev. Lett. 96, 025003 (2006),
https://doi.org/10.1103/PhysRevLett.96.025003
[30] T.T. Xi, X. Lu, and Z. Zhang, Spatiotemporal moving focus of long femtosecond-laser filaments in air, Phys. Rev. E 78, 055401 (2008),
https://doi.org/10.1103/PhysRevE.78.055401
[31] S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, Breakup and fusion of self-guided femtosecond light pulses in air, Phys. Rev. Lett. 86, 5470 (2001),
https://doi.org/10.1103/PhysRevLett.86.5470
[32] E.E. Fill, Focusing limits of ultrashort laser pulses: analytical theory, J. Opt. Soc. Am. B 11, 2241–2245 (1994),
https://doi.org/10.1364/JOSAB.11.002241
[33] A. Chiron, B. Lamouroux, R. Lange, J.F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, and A. Mysyrowicz, Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases, Eur. Phys. J. D 6, 383–396 (1999),
https://doi.org/10.1007/s100530050322
[34] A. Couairon, M. Franco, G. Méchain, T. Olivier, B. Prade, and A. Mysyrowicz, Femtosecond filamentation in air at low pressures: Part I: Theory and numerical simulations, Opt. Commun. 259, 265–273 (2006),
https://doi.org/10.1016/j.optcom.2005.08.064
[35] M. Mlejnek, E.M. Wright, and J.V. Moloney, Dynamic spatial replenishment of femtosecond pulses propagating in air, Opt. Lett. 23, 382–384 (1998),
https://doi.org/10.1364/OL.23.000382
[36] S.Y. Li, F.M. Guo, Y.J. Yang, and M.X. Jin, Defocusing role in femtosecond filamentation: Higher-order Kerr effect or plasma effect?, Chin. Phys. B 11, 54–58 (2015),
https://cpb.iphy.ac.cn/article/2015/cpb_24_11_114207.html