[PDF]    https://doi.org/10.3952/physics.2023.63.3.1

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 113–121 (2023)

ON EVALUATION OF IMAGE QUALITY IN NONPARAXIAL SINGLE-PIXEL IMAGING
Karolis Mundrysa, Sergej Orlova, Paulius Kizevičiusa, Linas Minkevičiusb, and Gintaras Valušisb
a Department of Fundamental Research, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
b Department of Optoelectronics, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: sergejus.orlovas@ftmc.lt

Received 22 March 2023; revised 16 May 2023; accepted 22 May 2023

High numerical apertures lead to an appearance of distortions in a single-shot image, which make obtaining images troublesome if not impossible. These obstacles can be overcome in single-pixel imaging, where different strategies lead to inspection of objects with a good resolution, contrast and brightness. Recent advances in flat photonic elements have enabled the creation of compact nonparaxial imaging systems, which are especially promising in the THz range of wavelengths, bringing advances to such fields as communication, material inspection and spectroscopy. In this work, we dive into the problematics of single-pixel imaging: we introduce an object sample, which we use to investigate the resolution, contrast and brightness of the classical two-lens imaging setup. We evaluate the nonparaxial imaging of the sample and report that the conditions for the best contrast and the best brightness are decoupled in nonparaxial single pixel imaging. To overcome this hurdle, we use two integral image quality assessment techniques from computational imaging theory and estimate the quality of the image in a virtual numerical THz imaging scenario. The localized mean square error metric did not cause additional constraints to the quality of the image, whereas the global mean square error has restricted the range of possible imaging setups. Thus, the computational integral image quality assessment techniques back up the main claim of this study that in the single-pixel imaging the resolution is decoupled from the image brightness.
Keywords: nonparaxial imaging, single-pixel imaging, contrast, resolution, image quality assessment

DĖL VAIZDO KOKYBĖS ĮVERTINIMO NEPARAKSIALINIAME VIENO PIKSELIO VAIZDINIME
Karolis Mundrysa, Sergej Orlova, Paulius Kizevičiusa, Linas Minkevičiusb, Gintaras Valušisb

a Fizinių ir technologijos mokslų centro Fundamentinių tyrimų skyrius, Vilnius, Lietuva
b Fizinių ir technologijos mokslų centro Optoelektronikos skyrius, Vilnius, Lietuva

Esant didelei skaitmeninei apertūrai, vieno kadro vaizdinime atsiranda iškraipymų, dėl kurių kokybiškus vaizdus gauti yra sunku, o kartais gal net neįmanoma. Šias kliūtis galima įveikti naudojant vieno pikselio vaizdinimą, kai įvairios strategijos leidžia matyti objektus, pasižyminčius gera skiriamąja geba, kontrastu ir ryškumu. Naujausi plokščiosios fotonikos pasiekimai leido sukurti kompaktiškas neparaksialines vaizdinimo sistemas, kurios yra ypač perspektyvios THz bangų ilgių diapazone bei yra pažangios tokiose srityse kaip komunikacija, medžiagų tikrinimas bei spektroskopija. Šiame darbe nagrinėjama vieno pikselio vaizdinimo problematika: pristatomas bandinio pavyzdys, kuris naudojamas dviejų zoninių plokštelių vaizdinimo sistemos skyrai, kontrastui ir ryškumui nustatyti. Atliekamas neparaksialinis bandinio vaizdinimas ir parodoma, kad geriausio kontrasto ir geriausio ryškio sąlygos yra viena nuo kitos atsietos neparaksialiniame vieno pikselio vaizdinime. Tikintis apeiti šią netikėtą kliūtį, pasinaudota dviem integraliais vaizdo kokybės vertinimo metodais iš skaitmeninių vaizdų teorijos ir jais remiantis įvertinta vaizdo kokybė virtualiame skaitmeniniame THz vaizdinimo scenarijuje. Lokalizuoto vidutinio kvadratinio nuokrypio metrika papildomai neapriboja gero vaizdo kokybės sąlygų, o suminis vidutinis kvadratinis nuokrypis stipriai apriboja galimų vaizdinimo atstumų diapazoną. Taigi, skaitmeniniai integralūs vaizdo kokybės nustatymo metodai patvirtina pagrindinį šio tyrimo teiginį, kad vieno pikselio vaizdo skiriamoji geba yra atsieta nuo vaizdo ryškumo.


References / Nuorodos

[1] T.B. Pittman, Y. Shih, D. Strekalov, and A.V. Sergienko, Optical imaging by means of two-photon quantum entanglement, Phys. Rev. A 52, R3429 (1995),
https://doi.org/10.1103/PhysRevA.52.R3429
[2] J.H. Shapiro, Computational ghost imaging, Phys. Rev. A 78, 061802 (2008),
https://doi.org/10.1103/PhysRevA.78.061802
[3] M.F. Duarte, M.A. Davenport, D. Takhar, J.N. Laska, T. Sun, K.F. Kelly, and R.G. Baraniuk, Single-pixel imaging via compressive sampling, IEEE Signal Process. Mag. 25, 83 (2008),
https://doi.org/10.1109/MSP.2007.914730
[4] M.P. Edgar, G.M. Gibson, and M.J. Padgett, Principles and prospects for single-pixel imaging, Nat. Photonics 13, 13 (2019),
https://doi.org/10.1038/s41566-018-0300-7
[5] M.-J. Sun and J.-M. Zhang, Single-pixel imaging and its application in three-dimensional reconstruction: A brief review, Sensors 19, 732 (2019),
https://doi.org/10.3390/s19030732
[6] C.A. Osorio Quero, D. Durini, J. Rangel-Magdaleno, and J. Martinez-Carranza, Single-pixel imaging: An overview of different methods to be used for 3D space reconstruction in harsh environments, Rev. Sci. Instrum. 92, 111501 (2021),
https://doi.org/10.1063/5.0050358
[7] R.F. Lyon, in: Digital Photography II, Vol. 6069 (SPIE, 2006) p. 606901,
https://doi.org/10.1117/12.644941
[8] B.J. Logie, Apparatus for Transmitting Views or Images to a Distance, US Patent 1,699,270 (1929),
[PDF]
[9] P. Mertz and F. Gray, A theory of scanning and its relation to the characteristics of the transmitted signal in telephotography and television, Bell Syst. Tech. J. 13, 464 (1934,
https://doi.org/10.1002/j.1538-7305.1934.tb00675.x
[10] H. Rubinsztein-Dunlop, A. Forbes, M.V. Berry, M.R. Dennis, D.L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, et al., Roadmap on structured light, J. Opt. 19, 013001 (2016),
https://doi.org/10.1088/2040-8978/19/1/013001
[11] M. Mazilu, D.J. Stevenson, F. Gunn-Moore, and K. Dholakia, Light beats the spread: "non-diffracting" beams, Laser Photonics Rev. 4, 529 (2010),
https://doi.org/10.1002/lpor.200910019
[12] Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, and X. Yuan, Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities, Light Sci. Appl. 8, 90 (2019),
https://doi.org/10.1038/s41377-019-0194-2
[13] L. Minkevičius, D. Jokubauskis, I. Kašalynas, S. Orlov, A. Urbas, and G. Valušis, Bessel terahertz imaging with enhanced contrast realized by silicon multi-phase diffractive optics, Opt. Express 27, 36358 (2019),
https://doi.org/10.1364/OE.27.036358
[14] R. Ivaškevičiūtė-Povilauskienė, P. Kizevičius, E. Nacius, D. Jokubauskis, K. Ikamas, A. Lisauskas, N. Alexeeva, I. Matulaitienė, V. Jukna, S. Orlov, et al., Terahertz structured light: nonparaxial Airy imaging using silicon diffractive optics, Light Sci. Appl. 11, 326 (2022),
https://doi.org/10.1038/s41377-022-01007-z
[15] M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013),
https://www.sciencedirect.com/book/9780080264820/principles-of-optics#book-info
[16] W.J. Smith, Modern Optical Engineering: The Design of Optical Systems (McGraw-Hill Education, 2008),
https://www.mhprofessional.com/modern-optical-engineering-4e-pb-9781265902650-usa
[17] E.H. Stelzer, Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy, J. Microsc. 189, 15 (1998),
https://doi.org/10.1046/j.1365-2818.1998.00290.x
[18] U. Sara, M. Akter, and M.S. Uddin, Image quality assessment through FSIM, SSIM, MSE and PSNR - a comparative study, J. Comput. Commun. 7, 8 (2019),
https://doi.org/10.4236/jcc.2019.73002
[19] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process. 13, 600 (2004),
https://doi.org/10.1109/TIP.2003.819861