[PDF]    https://doi.org/10.3952/physics.2023.63.3.7

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 164–172 (2023)

STUDYING SIMILARITY OF SHAPES VIA TERAHERTZ EMISSION SPECTROSCOPY: THE CASE OF UKRAINIAN AND LITHUANIAN SYMBOLS
Barbora Škėlaitėa,b, Vytautas Jakštasc, Marius Treiderisc, Andrius Bičiūnasa, Kęstutis Ikamasd,e, Renata Butkutėa, and Ignas Grigelionisa
a Department of Optoelectronics, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
b Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
c Department of Physical Technologies, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
d Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
e General Jonas Žemaitis Military Academy of Lithuania, Šilo 5A, 10322 Vilnius, Lithuania
Email: ignas.grigelionis@ftmc.lt

Received 3 October 2023; accepted 3 October 2023

In this paper, the thermal emission from the n-GaAs/GaAs structure equipped with the Ti/Au metasurface is being investigated in the terahertz region. The metacell shape was chosen to be of heraldic origin, that is either the Ukrainian Trident or the Lithuanian Columns of Gediminids. The experiments were performed using far-infrared Fourier spectroscopy, where the heated sample served as the source of THz radiation. The optical properties of such structures were simulated using the rigorous coupled wave analysis method in order to explain the origin of experimentally observed spectral features. The deconstruction of the simulated spectra was also performed by simulating the properties of simplified metacells which constitute the metacells of the heraldic symbols investigated here. The spectral analysis suggests the similarity between the investigated symbols, which is also reviewed from the historical point of view.
Keywords: GaAs, metasurfaces, terahertz spectroscopy, magnetic polaritons

TERAHERCŲ EMISIJOS SPEKTROSKOPIJA PAVIDALŲ PANAŠUMUI TIRTI: UKRAINOS IR LIETUVOS SIMBOLIŲ NAGRINĖJIMAS
Barbora Škėlaitėa,b, Vytautas Jakštasc, Marius Treiderisc, Andrius Bičiūnasa, Kęstutis Ikamasd,e, Renata Butkutėa, Ignas Grigelionisa

a Fizinių ir technologijos mokslų centro Optoelektronikos skyrius, Vilnius, Lietuva
b Vilniaus universiteto Fotonikos ir nanotechnologijų institutas, Vilnius, Lietuva
c Fizinių ir technologijos mokslų centro Fizikinių technologijų skyrius, Vilnius, Lietuva
d Vilniaus universiteto Taikomosios elektrodinamikos ir telekomunikacijų institutas, Vilnius, Lietuva
e Generolo Jono Žemaičio Lietuvos karo akademija, Vilnius, Lietuva

Šiame darbe nagrinėjama n-GaAs/GaAs struktūrų su Ti/Au metapaviršiais šiluminė emisija terahercinio dažnio srityje. Pasirinkta metapaviršių sudarančių metaatomų forma atspindi valstybinius simbolius, konkrečiai ukrainietiškąjį tridantį (тризуб, trizub) bei lietuviškuosius Gediminaičių stulpus. Eksperimentiniai tyrimai buvo atliekami naudojant tolimosios infraraudonosios srities Furjė spektroskopijos metodus, kai spinduliuotės šaltinis yra pats bandinys, pakaitintas iki 240 °C temperatūros. Siekiant paaiškinti stebėtų spektrinių ypatumų prigimtį, optiniai bandinių parametrai buvo sumodeliuoti naudojantis griežtosios susietųjų bangų analizės metodu. Sumodeliuotų spektrų dekonstravimas buvo atliktas modeliuojant atskirų metaatomus sudarančių struktūrų spektrus. Atlikta spektrinė analizė parodė, kad tyrinėti heraldiniai valstybių simboliai turi panašumų, o tai atsispindi ir istoriniame kontekste.


References / Nuorodos

[1] A. Li, S. Singh, and D. Sievenpiper, Metasurfaces and their applications, Nanophotonics 7(6), 989–1011 (2018),
https://doi.org/10.1515/nanoph-2017-0120
[2] J. Hu, S. Bandyopadhyay, Y. Liu, and L. Shao, A review on metasurface: From principle to smart metadevices, Front. Phys. 8, 586087 (2021),
https://doi.org/10.3389/fphy.2020.586087
[3] A.D. Squires, X. Gao, J. Du, Z. Hana, D.H. Seoa, J.S. Coopera, A.T. Murdocka, S.K.H. Lama, T. Zhanga, and T. van der Laan, Electrically tuneable terahertz metasurface enabled by a graphene/gold bilayer structure, Commun. Mater 3, 56 (2022),
https://doi.org/10.1038/s43246-022-00279-7
[4] O. Rasoga, D. Dragoman, A. Dinescu, C.A. Dirdal, I. Zgura, F. Nastase, A. M. Baracu, S. Iftimie, and A.C. Galca, Tuning the infrared resonance of thermal emission from metasurfaces working in near-infrared, Sci. Rep. 13, 7499 (2013),
https://doi.org/10.1038/s41598-023-34741-4
[5] A. John-Herpin, D. Kavungal, L. von Mücke, and H. Altug, Infrared metasurface augmented by deep learning for monitoring dynamics between all major classes of biomolecules, Adv. Mater. 33, 2006054 (2021),
https://doi.org/10.1002/adma.202006054
[6] H. Chen, J.F. O'Hara, A.J. Taylor, R.D. Averitt, C. Highstrete, M. Lee, and W.J. Padilla, Complementary planar terahertz metamaterials, Opt. Express 15, 1084–1095 (2007),
https://doi.org/10.1364/OE.15.001084
[7] F. Alves, B. Kearney, D. Grbovic, and G. Karunasiri, Narrowband terahertz emitters using metamaterial films, Opt. Express 20, 21025–21032 (2012),
https://doi.org/10.1364/OE.20.021025
[8] I. Puscasu and W.L. Schaich, Narrow-band, tunable infrared emission from arrays of microstrip patches, Appl. Phys. Lett. 92, 233102 (2008),
https://doi.org/10.1063/1.2938716
[9] J.A. Mason, S. Smith, and D. Wasserman, Strong absorption and selective thermal emission from a midinfrared metamaterial, Appl. Phys. Lett. 98, 241105 (2011),
https://doi.org/10.1063/1.3600779
[10] I. Grigelionis, V. Čižas, M. Karaliūnas, V. Jakštas, K. Ikamas, A. Urbanowicz, M. Treideris, A. Bičiūnas, D. Jokubauskis, R. Butkutė, and L. Minkevičius, Narrowband thermal terahertz emission from homoepitaxial GaAs structures coupled with Ti/Au metasurface, Sensors 23, 4600 (2023),
https://doi.org/10.3390/s23104600
[11] V. Akmenytė-Ruzgienė, Columns of the Gediminids (Office of the Seimas of the Republic of Lithuania, Unit for Historical Memory of Parliamentarianism),
https://www.lrs.lt/sip/portal.show?p_r=38114&p_k=2
[12] D. Razauskas, Gediminaičių stulpai simbolikos požiūriu, Liaudies kultūra 2014/1, 31–55 (2014) [in Lithuanian],
https://www.lnkc.lt/go.php/lit/2014/694
[13] J. Trinkūnas, Lietuvių senosios religijos kelias (Asveja, Vilnius, 2009) [in Lithuanian]
[14] K. Wolczuk, The Moulding of Ukraine: The Constitutional Politics of State Formation (Central European University Press, Budapest, 2001) p. 230,
https://www.jstor.org/stable/10.7829/j.ctt1cgf89k
[15] A. Zhukovsky, Trident, in: Encyclopedia of Ukraine, eds. K. Kubijovyč and D.H. Struk, Vol. 5 (University of Toronto Press Incorporated, Toronto, 1993) p. 283,
https://www.jstor.org/stable/10.3138/j.ctt15jjbj2
[16] U. Verovkin-Shelyuta, Columns, in: Grand Duchy of Lithuania, eds. G.P. Pashkov et al., Vol. 2 (Belarusian Encyclopedia, Minsk, 2005) p. 21 [in Belorussian]
[17] C. Kim and B. Lee, TORCWA: GPU-accelerated Fourier modal method and gradient-based optimization for metasurface design, Comput. Phys. Commun. 282, 108552 (2023),
https://doi.org/10.1016/j.cpc.2022.108552
[18] C.J. Fu, Z.M. Zhang, and D.B. Tanner, Planar heterogeneous structures for coherent emission of radiation, Opt. Lett. 30, 1873–1875 (2005),
https://doi.org/10.1364/OL.30.001873
[19] V.D. Lam, J.B. Kim, S.J. Lee, Y.P. Lee, and J.Y. Rhee, Dependence of the magnetic-resonance frequency on the cut-wire width of cut-wire pair medium, Opt. Express 15, 16651–16656 (2007),
https://doi.org/10.1364/OE.15.016651
[20] B.J. Lee, L.P. Wang, and Z.M. Zhang, Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film, Opt. Express 16, 11328–11336 (2008),
https://doi.org/10.1364/OE.16.011328
[21] T. Li, J.Q. Li, F.M. Wang, Q.J. Wang, H. Liu, S.N. Zhu, and Y.Y. Zhu, Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures, Appl. Phys. Lett. 90, 251112 (2007),
https://doi.org/10.1063/1.2750394
[22] T. Li, S.M. Wang, H. Liu, J.Q. Li, F.M. Wang, S.N. Zhu, and X. Zhang, Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials, J. Appl. Phys. 103, 023104 (2008),
https://doi.org/10.1063/1.2828178