[PDF]    https://doi.org/10.3952/physics.2023.63.4.5

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 63, 233–240 (2023)

STUDY OF THE LOW-COST HIPS AND PARAFFIN-BASED TERAHERTZ OPTICAL COMPONENTS
Kasparas Stanaitisa,b, Karolis Redeckasa,b, Augustė Bielevičiūtėa,b, Matas Bernatonisa,b, Domas Jokubauskisa, Vladislovas Čižasa, and Linas Minkevičiusa,b
a Department of Optoelectronics, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
b Faculty of Physics, Vilnius University, Saulėtekio 9, 10222 Vilnius, Lithuania
Email: kasparas.stanaitis@ftmc.lt

Received 26 October 2023; accepted 27 October 2023

The ever-increasing popularity of the terahertz (THz) frequency range reveals the increasingly obvious applicability limiting factor – the price of the final setup. This study is intended to contribute to the solution by evaluating the THz frequency range suitability of the optical components, fabricated using two easily accessible materials – high impact polystyrene (HIPS) and paraffin. The primary analysis using time-domain spectroscopy (TDS) revealed promising results, as both materials had sufficient refractive indexes of n ≈ 1.55 and a high transmittance. That allowed one to assume the feasibility of creating a low-cost THz frequency range lens. Lenses of focal lengths of f = 20, 30, 40 mm were fabricated using extrusion 3D printing and paraffin moulding. The produced lenses showcased the satisfactory beam focusing ability, comparable to that of already existing much less cost-efficient solutions. The THz imaging using the fabricated lenses has successfully been realized, proving the applicational possibilities of the imaging system with the proposed low-cost components employed.
Keywords: terahertz frequency range, beam shaping, paraffin lenses, THz imaging, 3D printed lenses

ŽEMOS KAINOS TERAHERCINĖS OPTIKOS KOMPONENTAI IŠ POLISTIRENO IR PARAFINO
Kasparas Stanaitisa,b, Karolis Redeckasa,b, Augustė Bielevičiūtėa,b, Matas Bernatonisa,b, Domas Jokubauskisa, Vladislovas Čižasa, Linas Minkevičiusa,b

a Fizinių ir technologijos mokslų centro Optoelektronikos skyrius, Vilnius, Lietuva
b Vilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva

Terahercinė (THz) spinduliuotė yra perspektyvi ir nuolat besiplečianti optoelektronikos sritis. Šis elektromagnetinių bangų ruožas naudojamas daugybėje įvairių taikymo sričių, įskaitant objektų vaizdų registravimą ir analizę. Plačiai pritaikyti šį dažnių ruožą trukdo aukšta įrangos kaina bei sudėtinga komponentų gamyba. Būtent šią problemą siekiama išspręsti, gaminant optinius komponentus iš pigių ir lengvai prieinamų medžiagų – parafino ir smūgiams atsparaus polistireno (HIPS). Šių medžiagų analizė laikinės skyros spektroskopijos metodu (angl. time-domain spectroscopy), atskleidė, kad abi šios medžiagos yra tinkamos sub-THz spinduliuotei dėl sąlyginai aukšto lūžio rodiklio n ≈ 1,55 ir gero pralaidumo tame ruože. Šie parametrai atvėrė galimybę pagaminti lęšius teraherciniam bangų ruožui – naudojantis 3D spausdinimo technologija, pagaminta po tris parafino bei polistireno lęšius, kurių židinio nuotoliai f = 20, 30, 40 mm. Pagaminti optiniai komponentai pasižymi gera spinduliuotės fokusavimo kokybe, palyginti su daug brangesniais ir sudėtingiau gaminamais lęšiais. Vaizdinimo sistema charakterizuota panaudojus MTF (modulation transfer function) vaizdinant modifikuotą USAF1951 taikinį. Komponentai sėkmingai pritaikyti terahercinėje vaizdinimo sistemoje, vaizdinant kredito kortelę popieriniame voke. Parodyta, kad norint sėkmingai panaudoti THz spinduliuotės ruožą, brangūs ir sunkiai prieinami komponentai yra nebūtini.


References / Nuorodos

[1] A. Leitenstorfer, A.S. Moskalenko, T. Kampfrath, J. Kono, E. Castro-Camus, K. Peng, N. Qureshi, D. Turchinovich, K. Tanaka, A. Markelz, et al., The 2023 terahertz science and technology roadmap, J. Phys. D 56(22), 223001 (2023),
https://doi.org/10.1088/1361-6463/acbe4c
[2] G. Valušis, A. Lisauskas, H. Yuan, W. Knap, and H.G. Roskos, Roadmap of terahertz imaging 2021, Sensors 21(12), 4092 (2021),
https://doi.org/10.3390/s21124092
[3] J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdarset, THz imaging and sensing for security applications – explosives, weapons and drugs, Semicond. Sci. Technol. 20(7), S266 (2005),
https://doi.org/10.1088/0268-1242/20/7/018
[4] M. Wan, J.J. Healy, and J.T. Sheridan, Terahertz phase imaging and biomedical applications, Opt. Laser Technol. 122, 105859 (2020),
https://doi.org/10.1016/j.optlastec.2019.105859
[5] K. Ahi and M. Anwar, Advanced terahertz techniques for quality control and counterfeit detection, Proc. SPIE 9856, 98560G (2016),
https://doi.org/10.1117/12.2228684
[6] R. Ivaškevičiūtė-Povilauskienė, P. Kizevičius, E. Nacius, D. Jokubauskis, K. Ikamas, A. Lisauskas, N. Alexeeva, I. Matulaitienė, V. Jukna, S. Orlov, L. Minkevičius, and G. Valušis, Terahertz structured light: nonparaxial Airy imaging using silicon diffractive optics, Light Sci. Appl. 11(1), 326 (2022),
https://doi.org/10.1038/s41377-022-01007-z
[7] J.R. Middendorf, D.A. LeMaster, M. Zarepoor, and E.R. Brown, Design of multi-order diffractive THz lenses, in: Proceedings of the 2012 37th International Conference on Infrared, Millimetre, and Terahertz Waves (IEEE, 2012) pp. 1–2,
https://doi.org/10.1109/IRMMW-THz.2012.6380211
[8] M. Naftaly and A. Gregory, Terahertz and microwave optical properties of single‐crystal quartz and vitreous silica and the behaviour of the boson peak, Appl. Sci. 11(15), 6733 (2021),
https://doi.org/10.3390/app11156733
[9] R. Ivaškevičiūtė-Povilauskienė, V. Čižas, E. Nacius, I. Grigelionis, K. Redeckas, M. Bernatonis, S. Orlov, G. Valušis, and L. Minkevičius, Flexible terahertz optics: light beam profile engineering via C-shaped metallic metasurface, Front. Phys. 11, 1196726 (2023),
https://doi.org/10.3389/fphy.2023.1196726
[10] H. Yuan, A. Lisauskas, M. Zhang, A. Rennings, D. Erni, and H.G. Roskos, Dynamic-range enhancement of heterodyne THz imaging by the use of a soft paraffin-wax substrate lens on the detector, in: Proceedings of the 2019 Photonics and Electromagnetics Research Symposium (Institute of Electrical and Electronics Engineers Inc., 2019) pp. 2607–2611,
https://doi.org/10.1109/PIERS-Fall48861.2019.9021735
[11] A. Siemion, M. Surma, P. Komorowski, I. Ducin, and P. Sobotka, Terahertz diffractive optics: different way of thinking, Proc. SPIE 11499, 114990C (2020),
https://doi.org/10.1117/12.2568849
[12] A. Siemion, M. Suma, P. Komorowski, P. Zagrajek, M. Walczhakowski, A. Melaniuk, I. Ducin, P. Sobotka, and E. Czerwińska, Paraffin diffractive lens for subterahertz range – simple and cost efficient solution, IEEE Trans. Terahertz Sci. Technol. 11(4), 396–401 (2021),
https://doi.org/10.1109/TTHZ.2021.3063809
[13] V. Tamošiūnas, L. Minkevičius, I. Bučius, D. Jokubauskis, K. Redeckas, and G. Valušis, Design and performance of extraordinary low-cost compact terahertz imaging system based on electronic components and paraffin wax optics, Sensors 22(21), 8485 (2022),
https://doi.org/10.3390/s22218485
[14] A.D. Squires and R.A. Lewis, Feasibility and characterization of common and exotic filaments for use in 3D printed terahertz devices, J. Infrared Millim. Terahertz Waves 39(7), 614–635 (2018),
https://doi.org/10.1007/s10762-018-0498-y
[15] J.A. Byford, Z. Purtill, and P. Chahal, Fabrication of terahertz components using 3D printed templates, in: Proceedings of the Electronic Components and Technology Conference (Institute of Electrical and Electronics Engineers Inc., 2016) pp. 817–822,
https://doi.org/10.1109/ECTC.2016.193
[16] A. Shevchik-Shekera, Designing and manufacturing aspherical polystyrene lenses for the terahertz region, Semicond. Phys. Quantum Electron. Optoelectron. 21(1), 83–88 (2018),
https://doi.org/10.15407/spqeo21.01.083
[17] S.F. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics, J. Infrared Millim. Terahertz Waves 35(12), 993–997 (2014),
https://doi.org/10.1007/s10762-014-0113-9
[18] A. Siemion, A. Melaniuk, P. Zagrajek, P. Komorowski, M. Walczakowski, M. Surma, P. Sobotka, I. Ducin, and E. Czerwińska, THz diffractive lens manufactured using 3D printer working for 0.6 THz, in: Proceedings of the International Microwave and Radar Conference (MIKON) (2020),
https://doi.org/10.23919/MIKON48703.2020.9253821
[19] I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues, Sensors 16(4), 432 (2016),
https://doi.org/10.3390/s16040432
[20] R. Peng, X. Fu, J.H. Mendez, P.S. Randolph, B.E. Bammes, and S.M. Stagg, Characterizing the resolution and throughput of the Apollo direct electron detector, J. Struct. Biol. X 7, 100080 (2023),
https://doi.org/10.1016/j.yjsbx.2022.100080
[21] F. Vilaplana, A. Ribes-Greus, and S. Karlsson, Degradation of recycled high-impact polystyrene. Simulation by reprocessing and thermo-oxidation, Polym. Degrad. Stab. 91(9), 2163–2170 (2006),
https://doi.org/10.1016/j.polymdegradstab.2006.01.007