Aušra Kynienė, Vyliautas Paberžis, Šarūnas Masys, and Valdas
Jonauskas
Received 9 November 2024; revised 1 December 2024; accepted 2
December 2024
References /
Nuorodos
[1] W.P. Bidelman, Line identifications in peculiar stars,
Astron. J.
67, 111 (1962),
https://doi.org/10.1086/108637
[2] J.A. Cardelli and D.M. Meyer, The abundance of interstellar
krypton*, Astrophys. J.
477, L57 (1997),
https://doi.org/10.1086/310513
[3] S.I.B. Cartledge, J.T. Lauroesch, D.M. Meyer, U.J. Sofia,
and G.C. Clayton, Interstellar krypton abundances: The detection
of kiloparsec-scale differences in galactic nucleosynthetic
history*, Astrophys. J.
687, 1043 (2008),
https://doi.org/10.1086/592132
[4] D. Pequignot and J.P. Baluteau, The identification of
krypton, xenon and other elements of rows 4, 5 and 6 of the
periodic table in the planetary nebula NGC 7027*, Astron.
Astrophys.
283(2), 593–625 (1994),
https://ui.adsabs.harvard.edu/abs/1994A%26A...283..593P/abstract
https://adsabs.harvard.edu/full/1994A%26A...283..593P
[5] K. Werner, T. Rauch, E. Ringat, and J.W. Kruk, First
detection of krypton and xenon in a white dwarf, Astrophys. J.
Lett.
753(1), L7 (2012),
https://doi.org/10.1088/2041-8205/753/1/L7
[6] J. Flicstein, Y. Vitel, O. Dulac, C. Debauche, Y. Nissim,
and C. Licoppe, Tunable UV-flash krypton lamp array useful for
large area deposition and in situ UV annealing of Si-based
dielectrics, Appl. Surf. Sci.
86(1–4), 286–293 (1995),
https://doi.org/10.1016/0169-4332(94)00458-7
[7] F.N. Haddou, P. Guillot, A. Belasri, T. Maho, and B.
Caillier, Formation of low pressure striations in a krypton
lamp, experimental characterization of the discharge:
Spectroscopic and electrical analysis, Optik
241, 166339
(2021),
https://doi.org/10.1016/j.ijleo.2021.166339
[8] Q. Liu, R. Wang, Z. Yang, J. Sun, W. Yang, H. Wang, and X.
Xu, Demonstration of a diode-pumped dual-wavelength metastable
krypton laser, High Power Laser Sci. Eng.
11, e87
(2023),
https://doi.org/10.1017/hpl.2023.73
[9] Y.E. Chung, S.R. Hong, M.-J. Lee, M. Lee, and H.-J. Lee,
Krypton-enhanced ventilation CT with dual energy technique:
Experimental study for optimal krypton concentration, Exp. Lung
Res.
40(9), 439–446 (2014),
https://doi.org/10.3109/01902148.2014.946630
[10] D. Rapp and P. Englander-Golden, Total cross sections for
ionization and attachment in gases by electron impact. I.
Positive ionization, J. Chem. Phys.
43, 1464–1479
(1965),
https://doi.org/10.1063/1.1696957
[11] B. Schram, F. De Heer, M. van der Wiel, and J. Kistemaker,
Ionization cross sections for electrons (0.6–20 keV) in noble
and diatomic gases, Phys.
31(1), 94–112 (1965),
https://doi.org/10.1016/0031-8914(65)90109-6
[12] B. Schram, H. Moustafa, J. Schutten, and F. de Heer,
Ionization cross sections for electrons (100–600 eV) in noble
and diatomic gases, Phys.
32(4), 734–740 (1966),
https://doi.org/10.1016/0031-8914(66)90005-X
[13] P. Nagy, A. Skutlartz, and V. Schmidt, Absolute ionisation
cross sections for electron impact in rare gases, J. Phys. B
13,
1249 (1980),
https://doi.org/10.1088/0022-3700/13/6/028
[14] R.C. Wetzel, F.A. Baiocchi, T.R. Hayes, and R.S. Freund,
Absolute cross sections for electron-impact ionization of the
rare-gas atoms by the fast-neutral-beam method, Phys. Rev. A
35,
559–577 (1987),
https://doi.org/10.1103/PhysRevA.35.559
[15] E. Krishnakumar and S.K. Srivastava, Ionisation cross
sections of rare-gas atoms by electron impact, J. Phys. B
21,
1055 (1988),
https://doi.org/10.1088/0953-4075/21/6/014
[16] J.A. Syage, Electron-impact cross sections for multiple
ionization of Kr and Xe, Phys. Rev. A
46, 5666–5679
(1992),
https://doi.org/10.1103/PhysRevA.46.5666
[17] A.A. Sorokin, L.A. Shmaenok, S.V. Bobashev, B. Möbus, M.
Richter, and G. Ulm, Measurements of electron-impact ionization
cross sections of argon, krypton, and xenon by comparison with
photoionization, Phys. Rev. A
61, 022723 (2000),
https://doi.org/10.1103/PhysRevA.61.022723
[18] A. Kobayashi, G. Fujiki, A. Okaji, and T. Masuoka,
Ionization cross section ratios of rare-gas atoms (Ne, Ar, Kr
and Xe) by electron impact from threshold to 1 keV, J. Phys. B
35,
2087 (2002),
https://doi.org/10.1088/0953-4075/35/9/307
[19] R. Rejoub, B.G. Lindsay, and R.F. Stebbings, Determination
of the absolute partial and total cross sections for
electron-impact ionization of the rare gases, Phys. Rev. A
65,
042713 (2002),
https://doi.org/10.1103/PhysRevA.65.042713
[20] E. McGuire, Electron ionization cross sections in the Born
approximation, Phys. Rev. A
16(1), 62–72 (1977),
https://doi.org/10.1103/PhysRevA.16.62
[21] D. Margreiter, H. Deutsch, and T. Märk, A semiclassical
approach to the calculation of electron impact ionization
cross-sections of atoms: from hydrogen to uranium, Int. J. Mass
Spectrom.
139, 127–139 (1994),
https://doi.org/10.1016/0168-1176(94)90024-8
[22] D.W. Chang and P.L. Altick, Doubly, singly differential and
total ionization cross sections of rare-gas atoms, J. Phys. B
29, 2325 (1996),
https://doi.org/10.1088/0953-4075/29/11/020
[23] S.D. Loch, M.S. Pindzola, C.P. Ballance, D.C. Griffin, D.M.
Mitnik, N.R. Badnell, M.G. O’Mullane, H.P. Summers, and A.D.
Whiteford, Electron-impact ionization of all ionization stages
of krypton, Phys. Rev. A
66, 052708 (2002),
https://doi.org/10.1103/PhysRevA.66.052708
[24] V. Jonauskas, Electron-impact double ionization of the
carbon atom, A&A
620, A188 (2018),
https://doi.org/10.1051/0004-6361/201834303
[25] V. Jonauskas, Electron-impact single ionization of the
nitrogen atom, A&A
659, A11 (2022),
https://doi.org/10.1051/0004-6361/202141801
[26] A. Kynienė, S. Kučas, S. Pakalka, Š. Masys, and V.
Jonauskas, Electron-impact single ionization of Fe
3+
from the ground and metastable states, Phys. Rev. A
100,
052705 (2019),
https://doi.org/10.1103/PhysRevA.100.052705
[27] V. Jonauskas, Electron impact single ionization for Si
atom, At. Data Nucl. Data Tables
135–136, 101363 (2020),
https://doi.org/10.1016/j.adt.2020.101363
[28] R.D. Cowan,
The Theory of Atomic Structure and Spectra
(University of California Press, Berkeley, CA, 1981),
https://doi.org/10.1525/9780520906150
[29] Y.-K. Kim, Scaling of plane-wave Born cross sections for
electron-impact excitation of neutral atoms, Phys. Rev. A
64,
032713 (2001),
https://doi.org/10.1103/PhysRevA.64.032713
[30] Y.-K. Kim and J.-P. Desclaux, Ionization of carbon,
nitrogen, and oxygen by electron impact, Phys. Rev. A
66,
012708 (2002),
https://doi.org/10.1103/PhysRevA.66.012708
[31] D.-H. Kwon, Y.-J. Rhee, and Y.-K. Kim, Cross sections for
ionization of Mo and Mo
+ by electron impact, Int. J.
Mass Spectrom.
245(1–3), 26–35 (2005),
https://doi.org/10.1016/j.ijms.2005.06.007
[32] D.-H. Kwon, Y.-J. Rhee, and Y.-K. Kim, Ionization of W and
W
+ by electron impact, Int. J. Mass Spectrom.
252(3),
213–221 (2006),
https://doi.org/10.1016/j.ijms.2006.03.007
[33] M.F. Gu, The flexible atomic code, Can. J. Phys.
86,
675–689 (2008),
https://doi.org/10.1139/p07-197
[34] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team,
NIST Atomic Spectra Database, Version 5.11 (National
Institute of Standards and Technology, Gaithersburg, MD, 2024),
https://physics.nist.gov/asd
https://doi.org/10.18434/T4W30F
[35] J. Koncevičiūtė, S. Kučas, Š. Masys, A. Kynienė, and V.
Jonauskas, Electron-impact triple ionization of Se
2+,
Phys. Rev. A
97, 012705 (2018),
https://doi.org/10.1103/PhysRevA.97.012705
[36] S. Pakalka, S. Kučas, Š. Masys, A. Kynienė, A.
Momkauskaitė, and V. Jonauskas, Electron-impact single
ionization of the Se
3+ ion, Phys. Rev. A
97,
012708 (2018),
https://doi.org/10.1103/PhysRevA.97.012708
[37] J. Koncevičiūtė, S. Kučas, A. Kynienė, Š. Masys, and V.
Jonauskas, Electron-impact double and triple ionization of Se
3+,
J. Phys. B 52(2), 025203 (2019),
https://doi.org/10.1088/1361-6455/aaf3e6
[38] A. Kynienė, S. Pakalka, Š. Masys, and V. Jonauskas,
Electron-impact ionization of W
25+, J. Phys. B
49(18),
185001 (2016),
https://doi.org/10.1088/0953-4075/49/18/185001
[39] A. Kynienė, Š. Masys, and V. Jonauskas, Influence of
excitations to high-
nl shells for the ionization process
in the W
26+ ion, Phys. Rev. A
91, 062707
(2015),
https://doi.org/10.1103/PhysRevA.91.062707
[40] A. Kynienė, G. Merkelis, A. Šukys, Š. Masys, S. Pakalka, R.
Kisielius, and V. Jonauskas, Maxwellian rate coefficients for
electron-impact ionization of
W26+, J. Phys.
B
51(15), 155202 (2018),
https://doi.org/10.1088/1361-6455/aacd87
[41] V. Jonauskas, A. Kynienė, G. Merkelis, G. Gaigalas, R.
Kisielius, S. Kučas, Š. Masys, L. Radžiūtė, and P. Rynkun,
Contribution of high-
nl shells to electron-impact
ionization processes, Phys. Rev. A
91, 012715 (2015),
https://doi.org/10.1103/PhysRevA.91.012715
[42] V. Jonauskas, Electron-impact ionization of Se
4+,
J. Quant. Spectrosc. Radiat. Transf.
239, 106659 (2019),
https://doi.org/10.1016/j.jqsrt.2019.106659