[PDF]    https://doi.org/10.3952/physics.2025.65.1.1

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 65, 24–31 (2025)

ELECTRON-IMPACT IONIZATION FOR Kr ATOM
Aušra Kynienė, Vyliautas Paberžis, Šarūnas Masys, and Valdas Jonauskas
Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: ausra.kyniene@tfai.vu.lt

Received 9 November 2024; revised 1 December 2024; accepted 2 December 2024

Electron-impact ionization cross sections for the ground level of the Kr atom are studied using the scaled distorted-wave (DW) approximation. It is demonstrated that the DW cross sections calculated in the potential of the ionizing ion overestimate the experimental data at low and medium energies of the impacting electron. The scaled DW results, that include in calculations the value of the ionization threshold provided by National Institute of Standards and Technology, lead to good agreement with the measurements. A negligible contribution from the indirect process of the ionization to the total ionization cross sections is obtained in the final results. The study demonstrates that the higher ionization stages appear as a result of the ejection of additional electrons from the atomic system by the sequential ionization.
Keywords: atomic data, ionization, krypton

Kr ATOMO JONIZACIJA ELEKTRONŲ SMŪGIAIS
Aušra Kynienė, Vyliautas Paberžis, Šarūnas Masys, Valdas Jonauskas

Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Darbe nagrinėjami elektronų smūgiais pasiektos jonizacijos skerspjūviai Kr atomo pagrindiniam lygmeniui, naudojant iškraipytųjų bangų (IB) metodą su daugiklio funkcijomis. IB jonizacijos skerspjūviai, apskaičiuoti jonizuojančio jono potenciale, pervertina eksperimentinius duomenis esant žemoms ir vidutinėms elektronų energijoms. IB rezultatai su daugiklio funkcijomis, kai įtraukiama Nacionalinio standartų ir technologijos instituto pateikta jonizacijos slenksčio vertė, gerai sutampa su atliktais matavimais. Galutiniai rezultatai rodo nereikšmingą netiesioginių jonizacijos procesų indėlį į bendrą jonizacijos, pasiektos elektronų smūgiais, skerspjūvį. Atliktas tyrimas atskleidžia, kad aukštesnės jonizacijos būsenos atsiranda dėl papildomų elektronų išmetimo iš atominės sistemos, vykstant papildomai jonizacijai.


References / Nuorodos

[1] W.P. Bidelman, Line identifications in peculiar stars, Astron. J. 67, 111 (1962),
https://doi.org/10.1086/108637
[2] J.A. Cardelli and D.M. Meyer, The abundance of interstellar krypton*, Astrophys. J. 477, L57 (1997),
https://doi.org/10.1086/310513
[3] S.I.B. Cartledge, J.T. Lauroesch, D.M. Meyer, U.J. Sofia, and G.C. Clayton, Interstellar krypton abundances: The detection of kiloparsec-scale differences in galactic nucleosynthetic history*, Astrophys. J. 687, 1043 (2008),
https://doi.org/10.1086/592132
[4] D. Pequignot and J.P. Baluteau, The identification of krypton, xenon and other elements of rows 4, 5 and 6 of the periodic table in the planetary nebula NGC 7027*, Astron. Astrophys. 283(2), 593–625 (1994),
https://ui.adsabs.harvard.edu/abs/1994A%26A...283..593P/abstract
https://adsabs.harvard.edu/full/1994A%26A...283..593P
[5] K. Werner, T. Rauch, E. Ringat, and J.W. Kruk, First detection of krypton and xenon in a white dwarf, Astrophys. J. Lett. 753(1), L7 (2012),
https://doi.org/10.1088/2041-8205/753/1/L7
[6] J. Flicstein, Y. Vitel, O. Dulac, C. Debauche, Y. Nissim, and C. Licoppe, Tunable UV-flash krypton lamp array useful for large area deposition and in situ UV annealing of Si-based dielectrics, Appl. Surf. Sci. 86(1–4), 286–293 (1995),
https://doi.org/10.1016/0169-4332(94)00458-7
[7] F.N. Haddou, P. Guillot, A. Belasri, T. Maho, and B. Caillier, Formation of low pressure striations in a krypton lamp, experimental characterization of the discharge: Spectroscopic and electrical analysis, Optik 241, 166339 (2021),
https://doi.org/10.1016/j.ijleo.2021.166339
[8] Q. Liu, R. Wang, Z. Yang, J. Sun, W. Yang, H. Wang, and X. Xu, Demonstration of a diode-pumped dual-wavelength metastable krypton laser, High Power Laser Sci. Eng. 11, e87 (2023),
https://doi.org/10.1017/hpl.2023.73
[9] Y.E. Chung, S.R. Hong, M.-J. Lee, M. Lee, and H.-J. Lee, Krypton-enhanced ventilation CT with dual energy technique: Experimental study for optimal krypton concentration, Exp. Lung Res. 40(9), 439–446 (2014),
https://doi.org/10.3109/01902148.2014.946630
[10] D. Rapp and P. Englander-Golden, Total cross sections for ionization and attachment in gases by electron impact. I. Positive ionization, J. Chem. Phys. 43, 1464–1479 (1965), 
https://doi.org/10.1063/1.1696957
[11] B. Schram, F. De Heer, M. van der Wiel, and J. Kistemaker, Ionization cross sections for electrons (0.6–20 keV) in noble and diatomic gases, Phys. 31(1), 94–112 (1965),
https://doi.org/10.1016/0031-8914(65)90109-6
[12] B. Schram, H. Moustafa, J. Schutten, and F. de Heer, Ionization cross sections for electrons (100–600 eV) in noble and diatomic gases, Phys. 32(4), 734–740 (1966),
https://doi.org/10.1016/0031-8914(66)90005-X
[13] P. Nagy, A. Skutlartz, and V. Schmidt, Absolute ionisation cross sections for electron impact in rare gases, J. Phys. B 13, 1249 (1980),
https://doi.org/10.1088/0022-3700/13/6/028
[14] R.C. Wetzel, F.A. Baiocchi, T.R. Hayes, and R.S. Freund, Absolute cross sections for electron-impact ionization of the rare-gas atoms by the fast-neutral-beam method, Phys. Rev. A 35, 559–577 (1987),
https://doi.org/10.1103/PhysRevA.35.559
[15] E. Krishnakumar and S.K. Srivastava, Ionisation cross sections of rare-gas atoms by electron impact, J. Phys. B 21, 1055 (1988),
https://doi.org/10.1088/0953-4075/21/6/014
[16] J.A. Syage, Electron-impact cross sections for multiple ionization of Kr and Xe, Phys. Rev. A 46, 5666–5679 (1992),
https://doi.org/10.1103/PhysRevA.46.5666
[17] A.A. Sorokin, L.A. Shmaenok, S.V. Bobashev, B. Möbus, M. Richter, and G. Ulm, Measurements of electron-impact ionization cross sections of argon, krypton, and xenon by comparison with photoionization, Phys. Rev. A 61, 022723 (2000),
https://doi.org/10.1103/PhysRevA.61.022723
[18] A. Kobayashi, G. Fujiki, A. Okaji, and T. Masuoka, Ionization cross section ratios of rare-gas atoms (Ne, Ar, Kr and Xe) by electron impact from threshold to 1 keV, J. Phys. B 35, 2087 (2002),
https://doi.org/10.1088/0953-4075/35/9/307
[19] R. Rejoub, B.G. Lindsay, and R.F. Stebbings, Determination of the absolute partial and total cross sections for electron-impact ionization of the rare gases, Phys. Rev. A 65, 042713 (2002),
https://doi.org/10.1103/PhysRevA.65.042713
[20] E. McGuire, Electron ionization cross sections in the Born approximation, Phys. Rev. A 16(1), 62–72 (1977),
https://doi.org/10.1103/PhysRevA.16.62
[21] D. Margreiter, H. Deutsch, and T. Märk, A semiclassical approach to the calculation of electron impact ionization cross-sections of atoms: from hydrogen to uranium, Int. J. Mass Spectrom. 139, 127–139 (1994),
https://doi.org/10.1016/0168-1176(94)90024-8
[22] D.W. Chang and P.L. Altick, Doubly, singly differential and total ionization cross sections of rare-gas atoms, J. Phys. B 29, 2325 (1996),
https://doi.org/10.1088/0953-4075/29/11/020
[23] S.D. Loch, M.S. Pindzola, C.P. Ballance, D.C. Griffin, D.M. Mitnik, N.R. Badnell, M.G. O’Mullane, H.P. Summers, and A.D. Whiteford, Electron-impact ionization of all ionization stages of krypton, Phys. Rev. A 66, 052708 (2002),
https://doi.org/10.1103/PhysRevA.66.052708
[24] V. Jonauskas, Electron-impact double ionization of the carbon atom, A&A 620, A188 (2018),
https://doi.org/10.1051/0004-6361/201834303
[25] V. Jonauskas, Electron-impact single ionization of the nitrogen atom, A&A 659, A11 (2022),
https://doi.org/10.1051/0004-6361/202141801
[26] A. Kynienė, S. Kučas, S. Pakalka, Š. Masys, and V. Jonauskas, Electron-impact single ionization of Fe3+ from the ground and metastable states, Phys. Rev. A 100, 052705 (2019),
https://doi.org/10.1103/PhysRevA.100.052705
[27] V. Jonauskas, Electron impact single ionization for Si atom, At. Data Nucl. Data Tables 135–136, 101363 (2020),
https://doi.org/10.1016/j.adt.2020.101363
[28] R.D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, CA, 1981),
https://doi.org/10.1525/9780520906150
[29] Y.-K. Kim, Scaling of plane-wave Born cross sections for electron-impact excitation of neutral atoms, Phys. Rev. A 64, 032713 (2001),
https://doi.org/10.1103/PhysRevA.64.032713
[30] Y.-K. Kim and J.-P. Desclaux, Ionization of carbon, nitrogen, and oxygen by electron impact, Phys. Rev. A 66, 012708 (2002),
https://doi.org/10.1103/PhysRevA.66.012708
[31] D.-H. Kwon, Y.-J. Rhee, and Y.-K. Kim, Cross sections for ionization of Mo and Mo+ by electron impact, Int. J. Mass Spectrom. 245(1–3), 26–35 (2005),
https://doi.org/10.1016/j.ijms.2005.06.007
[32] D.-H. Kwon, Y.-J. Rhee, and Y.-K. Kim, Ionization of W and W+ by electron impact, Int. J. Mass Spectrom. 252(3), 213–221 (2006),
https://doi.org/10.1016/j.ijms.2006.03.007
[33] M.F. Gu, The flexible atomic code, Can. J. Phys. 86, 675–689 (2008),
https://doi.org/10.1139/p07-197
[34] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database, Version 5.11 (National Institute of Standards and Technology, Gaithersburg, MD, 2024),
https://physics.nist.gov/asd
https://doi.org/10.18434/T4W30F
[35] J. Koncevičiūtė, S. Kučas, Š. Masys, A. Kynienė, and V. Jonauskas, Electron-impact triple ionization of Se2+, Phys. Rev. A 97, 012705 (2018),
https://doi.org/10.1103/PhysRevA.97.012705
[36] S. Pakalka, S. Kučas, Š. Masys, A. Kynienė, A. Momkauskaitė, and V. Jonauskas, Electron-impact single ionization of the Se3+ ion, Phys. Rev. A 97, 012708 (2018),
https://doi.org/10.1103/PhysRevA.97.012708
[37] J. Koncevičiūtė, S. Kučas, A. Kynienė, Š. Masys, and V. Jonauskas, Electron-impact double and triple ionization of Se3+, J. Phys. B 52(2), 025203 (2019),
https://doi.org/10.1088/1361-6455/aaf3e6
[38] A. Kynienė, S. Pakalka, Š. Masys, and V. Jonauskas, Electron-impact ionization of W25+, J. Phys. B 49(18), 185001 (2016),
https://doi.org/10.1088/0953-4075/49/18/185001
[39] A. Kynienė, Š. Masys, and V. Jonauskas, Influence of excitations to high-nl shells for the ionization process in the W26+ ion, Phys. Rev. A 91, 062707 (2015),
https://doi.org/10.1103/PhysRevA.91.062707
[40] A. Kynienė, G. Merkelis, A. Šukys, Š. Masys, S. Pakalka, R. Kisielius, and V. Jonauskas, Maxwellian rate coefficients for electron-impact ionization of W26+, J. Phys. B 51(15), 155202 (2018),
https://doi.org/10.1088/1361-6455/aacd87
[41] V. Jonauskas, A. Kynienė, G. Merkelis, G. Gaigalas, R. Kisielius, S. Kučas, Š. Masys, L. Radžiūtė, and P. Rynkun, Contribution of high-nl shells to electron-impact ionization processes, Phys. Rev. A 91, 012715 (2015),
https://doi.org/10.1103/PhysRevA.91.012715
[42] V. Jonauskas, Electron-impact ionization of Se4+, J. Quant. Spectrosc. Radiat. Transf. 239, 106659 (2019),
https://doi.org/10.1016/j.jqsrt.2019.106659