[PDF]    https://doi.org/10.3952/physics.2025.65.2.2

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 65, 81–106 (2025)

SECOND-ORDER RAYLEIGH–SCHRÖDINGER PERTURBATION THEORY FOR THE GRASP2018 PACKAGE: THREE-PARTICLE FEYNMAN DIAGRAM CONTRIBUTION TO VALENCE–VALENCE CORRELATIONS*
Gediminas Gaigalas, Pavel Rynkun, and Laima Kitovienė
Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
Emails: gediminas.gaigalas@tfai.vu.lt; pavel.rynkun@tfai.vu.lt; laima.radziute@tfai.vu.lt

Received 3 June 2025; revised 16 June 2025; accepted 18 June 2025

The method based on the second-order perturbation theory to identify the most important configuration state functions of various correlations is extended to include valence–valence correlations, which are described by the three-particle Feynman diagram. The extension presented in this work complements the core–valence, core, core–core and valence–valence correlations which were developed in a series of previous papers by G. Gaigalas, P. Rynkun, and L. Kitovienė. Whereas these valence–valence correlations are described by the three-particle Feynman diagram, additional developments to calculate the spin-angular parts of this diagram have been made to the program library librang\mathtype{librang} of the GRASP. As an example of the application of the developed method, the atomic calculations of the energy structure for the Se III ion are presented. In the present work, this method was also used to select the most significant configuration state functions and to use this basis to solve the self-consistent field equations.
Keywords: configuration interaction, spin-angular integration, perturbation theory, tensorial algebra, valence–valence correlations, core–valence correlations, core correlations, core–core correlations
* Dedicated to the memory of professor Zenonas Rokus Rudzikas (1940–2011) on the occasion of his birth anniversary


ANTROSIOS EILĖS RELĖJAUS IR ŠRĖDINGERIO TRIKDYMŲ TEORIJA GRASP2018 PROGRAMINIAM PAKETUI: TRIJŲ DALELIŲ FEINMANO DIAGRAMOS ĮTAKA VALENTINĖMS–VALENTINĖMS KORELIACIJOMS*
Gediminas Gaigalas, Pavel Rynkun, Laima Kitovienė

Vilniaus universiteto Fizikos fakulteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Antrosios eilės trikdymų teorija paremtas metodas, skirtas įvairių koreliacijų vertei nustatyti, išplėstas įtraukiant valentines–valentines koreliacijas, kurios aprašomos trijų dalelių Feinmano diagrama. Šis išplėtimas papildo kamieno–valentines, kamieno, kamieno–kamieno ir valentines–valentines koreliacijas, kurios buvo išplėtotos ankstesniuose G. Gaigalo, P. Rynkuno ir L. Kitovienės darbuose. Kadangi šios valentinės–valentinės koreliacijos yra aprašomos trijų dalelių Feinmano diagrama, buvo atlikti papildomi pakeitimai ir išplėtimai Grasp programos bibliotekoje „librang“, leidžiantys apskaičiuoti šios diagramos sukinines-kampines dalis. Darbe, kaip metodo taikymo pavyzdys, taip pat pateikiami Se III energijos struktūros skaičiavimai. Be to, išplėstasis metodas buvo pritaikytas atrinkti svarbiausias konfigūracinių būsenų funkcijas ir panaudoti jas suderintinio lauko lygtims spręsti.
* Skiriama profesoriaus Zenono Rokaus Rudziko (1940–2011) atminimui jo gimimo sukakties proga


References / Nuorodos

[1] G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: Core–valence correlations, Lith. J. Phys. 64(1), 20–39 (2024),
https://doi.org/10.3952/physics.2024.64.1.3
[2] G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: Core correlations, Lith. J. Phys. 64(2), 73–81 (2024),
https://doi.org/10.3952/physics.2024.64.2.1
[3] G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: Core–core correlations, Lith. J. Phys. 64(3), 139–161 (2024),
https://doi.org/10.3952/physics.2024.64.3.1
[4] G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: Valence–valence correlations, Lith. J. Phys. 65(1), 32–56 (2025),
https://doi.org/10.3952/physics.2025.65.1.2
[5] C. Froese Fischer, G. Gaigalas, P. Jönsson, and J. Bieroń, GRASP2018–A Fortran 95 version of the General Relativistic Atomic Structure Package, Comput. Phys. Commun. 237, 184–187 (2019),
https://doi.org/10.1016/j.cpc.2018.10.032
[6] C. Froese Fischer, M. Godefroid, T. Brage, P. Jönsson, and G. Gaigalas, Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions, J. Phys. B 49(18), 182004 (2016),
https://doi.org/10.1088/0953-4075/49/18/182004
[7] P. Jönsson, M. Godefroid, G. Gaigalas, J. Ekman, J. Grumer, W. Li, J. Li, T. Brage, I.P. Grant, J. Bieroń, and C. Froese Fischer, An introduction to relativistic theory as implemented in GRASP, Atoms 11(7), 1 (2023),
https://doi.org/10.3390/atoms11010007
[8] I. Lindgren and J. Morrison, Atomic Many-body Theory (Springer-Verlag Berlin Heidelberg, New York, 1982),
https://doi.org/10.1007/978-3-642-96614-9
[9] G. Gaigalas, A program library for computing pure spin-angular coefficients for one- and two-particle operators in relativistic atomic theory, Atoms 10(4), 129 (2022),
https://doi.org/10.3390/atoms10040129
[10] G. Gaigalas and Z. Rudzikas, On the secondly quantized theory of the many-electron atom, J. Phys. B 29(15), 3303 (1996),
https://doi.org/10.1088/0953-4075/29/15/007
[11] G. Gaigalas, Z. Rudzikas, and C. Froese Fischer, An efficient approach for spin-angular integrations in atomic structure calculations, J. Phys. B 30(17), 3747 (1997),
https://doi.org/10.1088/0953-4075/30/17/006
[12] G. Gaigalas, Irreducible Tensorial Form of the Stationary Perturbation Theory for Atoms and Ions with Open Shells, PhD Thesis (Institute of Physics, Vilnius, 1989), [in Russian],
https://kolekcijos.biblioteka.vu.lt/en/objects/990007058341008452#00001
[13] G. Gaigalas, J. Kaniauskas, and Z. Rudzikas, Diagrammatic technique of the angular momentum theory and second quantization, Liet. Fiz. Rink. (Sov. Phys. Coll.) 25, 3–13 (1985) [in Russian]
[14] A.P. Jucys and A.A. Bandzaitis, Theory of Angular Momentum in Quantum Mechanics (Mokslas, Vilnius, 1977) [in Russian]
[15] A.P. Yutsis, J.B. Levinson, and V.V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum (Israel Program for Scientific Translations Ltd, 1962),
https://archive.org/details/nasa_techdoc_19630001624
[16] D.M. Brink and G.R. Satchler, Angular Momentum (Clarendon Press, Oxford, 1968),
https://academic.oup.com/book/52877
[17] E. El Baz and B. Castel, Graphical Methods of Spin Algebra in Atomic, Nuclear, and Particle Physics (Marcel Dekker, New York, 1972),
https://archive.org/details/graphicalmethods0002elba
[18] D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, New Jersey, Hong Kong, 2021),
https://library.oapen.org/handle/20.500.12657/50493
[19] Y.T. Li, K. Wang, R. Si, M. Godefroid, G. Gaigalas, Ch.Y. Chen, and P. Jönsson, Reducing the computational load – atomic multiconfiguration calculations based on configuration state function generators, Comput. Phys. Commun. 283, 108562 (2023),
https://doi.org/10.1016/j.cpc.2022.108562
[20] R. Si, Y. Li, K. Wang, Ch. Chen, G. Gaigalas, M. Godefroid, and P. Jönsson, GRASPG – An extension to GRASP2018 based on configuration state function generators, Comput. Phys. Commun. 312, 109604 (2025),
https://doi.org/10.1016/j.cpc.2025.109604
[21] K. Dyall, I. Grant, C. Johnson, F. Parpia, and E. Plummer, GRASP: A general-purpose relativistic atomic structure program, Comput. Phys. Commun. 55, 425 (1989),
https://doi.org/10.1016/0010-4655(89)90136-7
[22] G. Gaigalas, P. Rynkun, N. Domoto, M. Tanaka, D. Kato, and L. Kitovienė, Theoretical investigation of energy levels and transitions for Ce III with applications to kilonova spectra, MNRAS 530, 5220 (2024),
https://doi.org/10.1093/mnras/stae1196
[23] P. Jönsson, G. Gaigalas, C. Froese Fischer, J. Bieroń, I.P. Grant, T. Brage, J. Ekman, M. Godefroid, J. Grumer, J. Li, and W. Li, GRASP manual for users, Atoms 11, 68 (2023),
https://doi.org/10.3390/atoms11040068