Emails: gediminas.gaigalas@tfai.vu.lt;
pavel.rynkun@tfai.vu.lt; laima.radziute@tfai.vu.lt
Received 3 June 2025; revised 16 June 2025; accepted 18 June 2025
References /
Nuorodos
[1] G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order
Rayleigh–Schrödinger perturbation theory for the G
RASP2018 package: Core–valence correlations,
Lith. J. Phys.
64(1), 20–39 (2024),
https://doi.org/10.3952/physics.2024.64.1.3
[2] G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order
Rayleigh–Schrödinger perturbation theory for the G
RASP2018 package: Core correlations, Lith. J.
Phys.
64(2), 73–81 (2024),
https://doi.org/10.3952/physics.2024.64.2.1
[3] G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order
Rayleigh–Schrödinger perturbation theory for the G
RASP2018 package: Core–core correlations,
Lith. J. Phys.
64(3), 139–161 (2024),
https://doi.org/10.3952/physics.2024.64.3.1
[4] G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order
Rayleigh–Schrödinger perturbation theory for the G
RASP2018 package: Valence–valence
correlations, Lith. J. Phys.
65(1), 32–56 (2025),
https://doi.org/10.3952/physics.2025.65.1.2
[5] C. Froese Fischer, G. Gaigalas, P. Jönsson, and J. Bieroń, G
RASP2018–A Fortran 95 version of the General
Relativistic Atomic Structure Package, Comput. Phys. Commun.
237,
184–187 (2019),
https://doi.org/10.1016/j.cpc.2018.10.032
[6] C. Froese Fischer, M. Godefroid, T. Brage, P. Jönsson, and
G. Gaigalas, Advanced multiconfiguration methods for complex
atoms: I. Energies and wave functions, J. Phys. B
49(18),
182004 (2016),
https://doi.org/10.1088/0953-4075/49/18/182004
[7] P. Jönsson, M. Godefroid, G. Gaigalas, J. Ekman, J. Grumer,
W. Li, J. Li, T. Brage, I.P. Grant, J. Bieroń, and C. Froese
Fischer, An introduction to relativistic theory as implemented
in G
RASP, Atoms
11(7), 1 (2023),
https://doi.org/10.3390/atoms11010007
[8] I. Lindgren and J. Morrison,
Atomic Many-body Theory
(Springer-Verlag Berlin Heidelberg, New York, 1982),
https://doi.org/10.1007/978-3-642-96614-9
[9] G. Gaigalas, A program library for computing pure
spin-angular coefficients for one- and two-particle operators in
relativistic atomic theory, Atoms
10(4), 129 (2022),
https://doi.org/10.3390/atoms10040129
[10] G. Gaigalas and Z. Rudzikas, On the secondly quantized
theory of the many-electron atom, J. Phys. B
29(15),
3303 (1996),
https://doi.org/10.1088/0953-4075/29/15/007
[11] G. Gaigalas, Z. Rudzikas, and C. Froese Fischer, An
efficient approach for spin-angular integrations in atomic
structure calculations, J. Phys. B
30(17), 3747 (1997),
https://doi.org/10.1088/0953-4075/30/17/006
[12] G. Gaigalas,
Irreducible Tensorial Form of the
Stationary Perturbation Theory for Atoms and Ions with Open
Shells, PhD Thesis (Institute of Physics, Vilnius, 1989),
[in Russian],
https://kolekcijos.biblioteka.vu.lt/en/objects/990007058341008452#00001
[13] G. Gaigalas, J. Kaniauskas, and Z. Rudzikas, Diagrammatic
technique of the angular momentum theory and second
quantization, Liet. Fiz. Rink. (Sov. Phys. Coll.)
25,
3–13 (1985) [in Russian]
[14] A.P. Jucys and A.A. Bandzaitis,
Theory of Angular
Momentum in Quantum Mechanics (Mokslas, Vilnius, 1977) [in
Russian]
[15] A.P. Yutsis, J.B. Levinson, and V.V. Vanagas,
Mathematical
Apparatus of the Theory of Angular Momentum (Israel
Program for Scientific Translations Ltd, 1962),
https://archive.org/details/nasa_techdoc_19630001624
[16] D.M. Brink and G.R. Satchler,
Angular Momentum
(Clarendon Press, Oxford, 1968),
https://academic.oup.com/book/52877
[17] E. El Baz and B. Castel,
Graphical Methods of Spin
Algebra in Atomic, Nuclear, and Particle Physics (Marcel
Dekker, New York, 1972),
https://archive.org/details/graphicalmethods0002elba
[18] D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii,
Quantum
Theory of Angular Momentum (World Scientific, Singapore,
New Jersey, Hong Kong, 2021),
https://library.oapen.org/handle/20.500.12657/50493
[19] Y.T. Li, K. Wang, R. Si, M. Godefroid, G. Gaigalas, Ch.Y.
Chen, and P. Jönsson, Reducing the computational load – atomic
multiconfiguration calculations based on configuration state
function generators, Comput. Phys. Commun.
283, 108562
(2023),
https://doi.org/10.1016/j.cpc.2022.108562
[20] R. Si, Y. Li, K. Wang, Ch. Chen, G. Gaigalas, M. Godefroid,
and P. Jönsson, G
RASPG – An extension to
G
RASP2018 based on configuration state
function generators, Comput. Phys. Commun.
312, 109604
(2025),
https://doi.org/10.1016/j.cpc.2025.109604
[21] K. Dyall, I. Grant, C. Johnson, F. Parpia, and E. Plummer,
G
RASP: A general-purpose relativistic
atomic structure program, Comput. Phys. Commun.
55, 425
(1989),
https://doi.org/10.1016/0010-4655(89)90136-7
[22] G. Gaigalas, P. Rynkun, N. Domoto, M. Tanaka, D. Kato, and
L. Kitovienė, Theoretical investigation of energy levels and
transitions for Ce III with applications to kilonova spectra,
MNRAS
530, 5220 (2024),
https://doi.org/10.1093/mnras/stae1196
[23] P. Jönsson, G. Gaigalas, C. Froese Fischer, J. Bieroń, I.P.
Grant, T. Brage, J. Ekman, M. Godefroid, J. Grumer, J. Li, and
W. Li, G
RASP manual for users, Atoms
11,
68 (2023),
https://doi.org/10.3390/atoms11040068