[PDF]    https://doi.org/10.3952/physics.2025.65.2.3

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 65, 107–123 (2025)

RADIOGRAPHY AND RADIOTHERAPY OF THE SIMULATED HUMAN TISSUE ENVIRONMENT WITH HIGH-ENERGY PROTONS: A THEORETICAL STUDY
Nasrin Niknama, Mahdi Eshghib, Seyede Nasrin Hosseini Motlagha, and Zohreh Paranga
aDepartment of Physics, Shiraz Branch, Islamic Azad University, Shiraz, Iran
bDepartment of Physics, Imam Hossein University, Tehran, Iran
Emails: eshgi54@gmail.com, m.eshghi@semnan.ac.ir

Received 17 January 2025; revised 2 July 2025; accepted 21 July 2025

In this research, the diagnostic imaging and therapy of the environment of selected human tissues by the produced protons from fusion reactions have been simulated by using the Geant4 tool. As a result, the stopping power and range of protons with different energies in these tissues have been obtained. As an example, Bragg peaks caused by protons with energies of 60 to 150 MeV have been shown in breast tissue. Further, the penetration depth of protons, proton flux, and the secondary particle flux of neutrons and gamma with energies of 20 to 70 MeV (in the therapeutic energy range) have been investigated in the breast tissue. Finally, a comparison of the residual dose in breast tissue without a tumour and with a tumour at 60 MeV energy has been done. Therefore, with such simulations, calculations, and creative approaches, effective measures can be taken in the fields of proton imaging and proton therapy because proton radiography is a method that can be used to extract the maximum required information from different human tissues. Also, tumours located in different human tissues can be targeted and destroyed by using different energies of protons.
Keywords: Monte Carlo simulation, proton imaging, penetration depth, stopping power, range

SIMULIUOTOS ŽMOGAUS AUDINIO TERPĖS RADIOGRAFIJA IR RADIOTERAPIJA NAUDOJANT AUKŠTOS ENERGIJOS PROTONUS: TEORINIS TYRIMAS
Nasrin Niknam, Mahdi Eshghi, Seyede Nasrin Hosseini Motlagh, Zohreh Parang

aIslamiškojo Azado universiteto Fizikos fakultetas, Širazas, Iranas
bImamo Hoseino universiteto Fizikos fakultetas, Teheranas, Iranas

Darbe nagrinėjami elektronų smūgiais pasiektos jonizacijos skerspjūviai Kr atomo pagrindiniam lygmeniui, naudojant iškraipytųjų bangų (IB) metodą su daugiklio funkcijomis. IB jonizacijos skerspjūviai, apskaičiuoti jonizuojančio jono potenciale, pervertina eksperimentinius duomenis esant žemoms ir vidutinėms elektronų energijoms. IB rezultatai su daugiklio funkcijomis, kai įtraukiama Nacionalinio standartų ir technologijos instituto pateikta jonizacijos slenksčio vertė, gerai sutampa su atliktais matavimais. Galutiniai rezultatai rodo nereikšmingą netiesioginių jonizacijos procesų indėlį į bendrą jonizacijos, pasiektos elektronų smūgiais, skerspjūvį. Atliktas tyrimas atskleidžia, kad aukštesnės jonizacijos būsenos atsiranda dėl papildomų elektronų išmetimo iš atominės sistemos, vykstant papildomai jonizacijai.


References / Nuorodos

[1] M. Tabak, D. Hinkel, S. Atzeni, E.M. Campbell, and K. Tanaka, Fast ignition overview and background, Fusion Sci. Technol. 26, 254–276 (2006),
https://doi.org/10.13182/FST49-3-254
[2] K.A. Tanaka, R. Kodama, H. Fujita, N. Heya, N. Izumi, Y. Kato, Y. Kitagawa, K. Mima, N. Miyanaga, T. Norimatsu, et al., Studies of ultra-intense laser plasma interactions for fast ignition, Phys. Plasmas. 7, 2014 (2000),
https://doi.org/10.1063/1.874023
[3] V.T. Tikhonchuk, T. Schlegel, C. Regan, M. Temporal, J. Feugeas, P. Nicolaï, and X. Ribeyre, Fast ion ignition with ultra-intense laser pulses, Nucl. Fusion 50, 045003 (2010),
https://doi.org/10.1088/0029-5515/50/4/045003
[4] M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, J. Woodworth, E.M. Campbell, M.D. Perry, and R.J. Mason, Ignition and high gain with ultrapowerful lasers, Phys. Plasmas 1(5), 1626–1634 (1994),
https://doi.org/10.1063/1.870664
[5] B.F. Towler, in: The Future of Energy, 1st ed. (Academic Press, 2014) p. 157,
https://doi.org/10.1016/B978-0-12-801027-3.00007-5
[6] N. Niknam, S.N. Hosseinimotlagh, and Z. Parang, 18FDG production in a PET imaging using a proton flux produced by the D-D fusion reaction, Basic Clin. Cancer Res. 13(3), 210–224 (2021),
https://doi.org/10.18502/bccr.v13i3.11403
[7] S.N. Hosseinimotlagh, N. Niknam, and Z. Parang, Role of GNPS on the enhancement of proton therapy of breast tumor using MCNPX simulation, Res. Sq. (2021),
https://doi.org/10.21203/rs.3.rs-955206/v1
[8] S.I. Radwan, S. Abdel Samad, and H. El-Khabeary, Effect of 14.7-MeV protons and 3.6-MeV alpha particles on fusion structural materials, Fusion Sci. Technol. 76, 710–722 (2020),
https://doi.org/10.1080/15361055.2020.1777669
[9] T.Z. Yuan, Z.J. Zhan, and C.N. Qian, New frontiers in proton therapy: applications in cancers, Cancer Commun. 39, 61 (2019),
https://doi.org/10.1186/s40880-019-0407-3
[10] W.D. Newhauser and R. Zhang, The physics of proton therapy, Phys. Med. Biol. 60, R155–R209 (2015),
https://doi.org/10.1088/0031-9155/60/8/R155
[11] H. Paganetti, C. Beltran, S. Both, L. Dong, J. Flanz, K. Furutani, C. Grassberger, D.R. Grosshans, A.-C. Knopf, J.A. Langendijk, et al., Roadmap: proton therapy physics and biology, Phys. Med. Biol. 66, 05RM01 (2021),
https://doi.org/10.1088/1361-6560/abcd16
[12] R.A. Halg and U. Schneider, Neutron dose and its measurement in proton therapy – current State of Knowledge, Br. J. Radiol. 93, 20190412 (2020),
https://doi.org/10.1259/bjr.20190412
[13] C. Domingo, J.I. Lagares, M. Romero-Expósito, B. Sánchez-Nieto, J.J. Nieto-Camero, J.A. Terrón, L. Irazola, A. Dasu, and F. Sánchez-Doblado, Peripheral organ equivalent dose estimation procedure in proton therapy, Front. Oncol. 12, 882476 (2022),
https://doi.org/10.3389/fonc.2022.882476
[14] C.M. Backer, C. Bäumer, M. Gerhardt, S. Ibisi, K. Kröninger, C. Nitsch, J. Weingarten, and B. Timmermann, Evaluation of the activation of brass apertures in proton therapy using gamma-ray spectrometry and Monte Carlo simulations, J. Radiol. Prot. 40, 848–860 (2020),
https://doi.org/10.1088/1361-6498/ab9f42
[15] D. West and A. Sherwood, Proton-scattering radiography, NDT 6(5), 249–257 (1973),
https://doi.org/10.1016/0029-1021(73)90072-8
[16] K. Peach and C. Ekdahl, Particle beam radiography, RAST 6, 117–142 (2013),
https://doi.org/10.1142/S1793626813300065
[17] G. Poludniowski, N.M. Allinson, and P.M. Evans, Proton radiography and tomography with application to proton therapy, Br. J. Radiol. 88, 20150134 (2015),
https://doi.org/10.1259/bjr.20150134
[18] M.C. Levy, D.D. Ryutov, S.C. Wilks, J.S. Ross, C.M. Huntington, F. Fiuza, D.A. Martinez, N.L. Kugland, M.G. Baring, and H.-S. Park, Development of an interpretive simulation tool for the proton radiography technique, Rev. Sci. Instrum. 86, 033302 (2015),
https://doi.org/10.1063/1.4909536
[19] A.J. Mackinnon, P.K. Patel, M. Borghesi, R.C. Clarke, R.R. Freeman, H. Habara, S.P. Hatchett, D. Hey, D.G. Hicks, S. Kar, et al., Proton radiography of a laser-driven implosion, Phys. Rev. Lett. 97, 045001 (2006),
https://doi.org/10.1103/PhysRevLett.97.045001
[20] Y.-C. Tsai, K.-H. Fan, T.-L. Tsai, C.-C. Lee, T. Aso, S.-W. Wu, C.-Y. Lin, C.-K. Tseng, C.-R. Chen, S. Balaji, and T.-C. Chao, Proton radiography using discrete range modulation method – A Monte Carlo study, Radiat. Phys. Chem. 200, 110279 (2022),
https://doi.org/10.1016/j.radphyschem.2022.110279
[21] N.S.P. King, E. Ables, A. Ken, K.R. Alrick, J.F. Amann, S. Balzar, P.D. Barnes Jr, M.L. Crow, S.B. Cushing, J.C. Eddleman, et al., An 800-MeV proton radiography facility for dynamic experiments, Nucl. Instrum. Methods Phys. Res. A 424, 84–91 (1999),
https://doi.org/10.1016/S0168-9002(98)01241-8
[22] C. Arran, C.P. Ridgers, and N.C. Woolsey, Proton radiography in background magnetic fields, Matter Radiat. Extrem. 6, 046904 (2021),
https://doi.org/10.1063/5.0054172
[23] L. Sheng, E. Yuan, F. Yuan, and B. Song, Amide proton transfer-weighted imaging of the abdomen: Current progress and future directions, Magn. Reson. Imaging 107, 88–99 (2024),
https://doi.org/10.1016/j.mri.2024.01.006
[24] L. Chang, X. Xu, G. Wu, L. Cheng, S. Li, W. Lv, D. Pylypenko, W. Dou, D. Yu, Q. Wang, and F. Wang, Predicting preoperative pathologic grades of bladder cancer using intravoxel incoherent motion and amide proton transfer-weighted imaging, Acad. Radiol. 31(4), 1438–1446 (2024),
https://doi.org/10.1016/j.acra.2023.09.044
[25] J. Berthold, C. Khamfongkhruea, J. Petzoldt, J. Thiele, T. Hölscher, P. Wohlfahrt, N. Peters, C. Hofmann, G. Janssens, J. Smeets, and C. Richter, First-in-human validation of CT-based proton range prediction using prompt gamma imaging in prostate cancer treatments, Int. J. Radiat. Oncol. Biol. Phys. 111(4), 1033–1043 (2021),
https://doi.org/10.1016/j.ijrobp.2021.06.036
[26] S. Shiraishi, M. Yamanaka, T. Murai, and K. Tokuuye, Evaluation of delivered doses in proton beam therapy for prostate cancer using positron emission tomography/computed tomography imaging, Clin. Oncol. 36(4), 265–270 (2024),
https://doi.org/10.1016/j.clon.2024.01.011
[27] Ö.F. Özpolat, B. Alım, E. Şakar, M. Büyükyıldız, and M. Kurudirek, Phy-X/ZeXTRa: A software for robust calculation of effective atomic numbers for photon, electron, proton, alpha particle, and carbon ion interactions, Radiat. Environ. Biophys. 59, 321–329 (2020),
https://doi.org/10.1007/s00411-019-00829-7
[28] P. Sigmund, Particle Penetration and Radiation Effects, Springer Series in Solid State Sciences, Vol. 151 (Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 2006),
https://doi.org/10.1007/3-540-31718-X
[29] M. Büyükyıldız, Charged particle interactions of human organs and tissues in heavy ion therapy; effective atomic number and electron density, AKU J. Sci. Eng. 20(2), 196–206 (2020),
https://doi.org/10.35414/akufemubid.692641
[30] M. Büyükyıldız and M. Kurudirek, Radiological properties of healthy, carcinoma and equivalent breast tissues for photon and charged particle interactions, Int. J. Radiat. Biol. 94(1), 70–78 (2018),
https://doi.org/10.1080/09553002.2018.1403057
[31] J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce Dubois, M. Asai, G. Barrand, and R. Capra, Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53(1), 270–278 (2006),
https://doi.org/10.1109/TNS.2006.869826
[32] J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, and A. Bagulya, Recent developments in GEANT4, Nucl. Instrum. Methods Phys. Res. A 835, 186–225 (2016),
https://doi.org/10.1016/j.nima.2016.06.125
[33] M. Prall, M. Durante, T. Berger, B. Przybyla, C. Graeff, P.M. Lang, C. LaTessa, L. Shestov, P. Simoniello, C. Danly, et al., High-energy proton imaging for biomedical applications, Sci. Rep. 6, 27651 (2016),
https://doi.org/10.1038/srep27651
[34] International Commission on Radiation Units and Measurements, Tissue Substitutes in Radiation Docimetry and Measurement, ICRU Report 44 (1989),
https://www.icru.org/report/tissue-substitutes-in-radiation-dosimetry-andmeasurement-report-44/
[35] K.T. Osman, Stopping powers of protons in biological human body substances (water, tissue, muscles and bones), Int. J. Novel Res. Phys. Chem. Mathematics 7, 8–12 (2020),
[PDF]
[36] K.T. Osman, Mass stopping power and range of alpha particles in adipose tissue, IJSEAS 6(10), 1–17 (2020),
https://doi.org/10.4236/oalib.1110775
[37] A.S. Almutairi and K.T. Osman, Mass stopping power and range of protons in biological human body tissues (ovary, lung and breast), Int. J. Med. Phys. Clin. Eng. Radiat. Oncol. 11(1), 48–59 (2021),
https://doi.org/10.4236/ijmpcero.2022.111005
[38] F.H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, Chs. 4, 8 and 10, 1st edn. (John Wiley and Sons, Inc., 1986),
https://doi.org/10.1002/9783527617135
[39] M.C. Tufan, and H. Gümüs, Stopping power calculations of compounds by using Thomas–Fermi–Dirac–Weizsäcker density functional, Acta Phys. Polon. A 114, 703–711 (2008),
https://doi.org/10.12693/APhysPolA.114.703
[40] A. Iqbal, N. Ullah, and A.U. Rahman, Density-dependent energy loss of protons in Pb and Be targets and percent mass-stopping power from Bethe-Bloch formula and Bichsel-Sternheimer data within 1–12 MeV energy range: A comparative study based on Bland-Altman analysis, J. Med. Imaging Radiat. Sci. (JMIRS) 50, 149–156 (2019),
https://doi.org/10.1016/j.jmir.2018.10.003
[41] W. Bragg and R.B.Sc. Kleeman, On the α particles of radium and their loss of range in passing through various atoms and moleculs, Lond. Edinb. Dubl. Phil. Mag. 10, 318–340 (2009),
https://doi.org/10.1080/14786440509463378