Received 17 January 2025; revised 2 July 2025; accepted 21 July
2025
References /
Nuorodos
[1] M. Tabak, D. Hinkel, S. Atzeni, E.M. Campbell, and K.
Tanaka, Fast ignition overview and background, Fusion Sci.
Technol.
26, 254–276 (2006),
https://doi.org/10.13182/FST49-3-254
[2] K.A. Tanaka, R. Kodama, H. Fujita, N. Heya, N. Izumi, Y.
Kato, Y. Kitagawa, K. Mima, N. Miyanaga, T. Norimatsu, et al.,
Studies of ultra-intense laser plasma interactions for fast
ignition, Phys. Plasmas.
7, 2014 (2000),
https://doi.org/10.1063/1.874023
[3] V.T. Tikhonchuk, T. Schlegel, C. Regan, M. Temporal, J.
Feugeas, P. Nicolaï, and X. Ribeyre, Fast ion ignition with
ultra-intense laser pulses, Nucl. Fusion
50, 045003
(2010),
https://doi.org/10.1088/0029-5515/50/4/045003
[4] M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks,
J. Woodworth, E.M. Campbell, M.D. Perry, and R.J. Mason,
Ignition and high gain with ultrapowerful lasers, Phys. Plasmas
1(5), 1626–1634 (1994),
https://doi.org/10.1063/1.870664
[5] B.F. Towler, in:
The Future of Energy, 1st ed.
(Academic Press, 2014) p. 157,
https://doi.org/10.1016/B978-0-12-801027-3.00007-5
[6] N. Niknam, S.N. Hosseinimotlagh, and Z. Parang, 18FDG
production in a PET imaging using a proton flux produced by the
D-D fusion reaction, Basic Clin. Cancer Res.
13(3),
210–224 (2021),
https://doi.org/10.18502/bccr.v13i3.11403
[7] S.N. Hosseinimotlagh, N. Niknam, and Z. Parang, Role of GNPS
on the enhancement of proton therapy of breast tumor using MCNPX
simulation, Res. Sq. (2021),
https://doi.org/10.21203/rs.3.rs-955206/v1
[8] S.I. Radwan, S. Abdel Samad, and H. El-Khabeary, Effect of
14.7-MeV protons and 3.6-MeV alpha particles on fusion
structural materials, Fusion Sci. Technol.
76, 710–722
(2020),
https://doi.org/10.1080/15361055.2020.1777669
[9] T.Z. Yuan, Z.J. Zhan, and C.N. Qian, New frontiers in proton
therapy: applications in cancers, Cancer Commun.
39, 61
(2019),
https://doi.org/10.1186/s40880-019-0407-3
[10] W.D. Newhauser and R. Zhang, The physics of proton therapy,
Phys. Med. Biol.
60, R155–R209 (2015),
https://doi.org/10.1088/0031-9155/60/8/R155
[11] H. Paganetti, C. Beltran, S. Both, L. Dong, J. Flanz, K.
Furutani, C. Grassberger, D.R. Grosshans, A.-C. Knopf, J.A.
Langendijk, et al., Roadmap: proton therapy physics and biology,
Phys. Med. Biol.
66, 05RM01 (2021),
https://doi.org/10.1088/1361-6560/abcd16
[12] R.A. Halg and U. Schneider, Neutron dose and its
measurement in proton therapy – current State of Knowledge, Br.
J. Radiol.
93, 20190412 (2020),
https://doi.org/10.1259/bjr.20190412
[13] C. Domingo, J.I. Lagares, M. Romero-Expósito, B.
Sánchez-Nieto, J.J. Nieto-Camero, J.A. Terrón, L. Irazola, A.
Dasu, and F. Sánchez-Doblado, Peripheral organ equivalent dose
estimation procedure in proton therapy, Front. Oncol.
12,
882476 (2022),
https://doi.org/10.3389/fonc.2022.882476
[14] C.M. Backer, C. Bäumer, M. Gerhardt, S. Ibisi, K.
Kröninger, C. Nitsch, J. Weingarten, and B. Timmermann,
Evaluation of the activation of brass apertures in proton
therapy using gamma-ray spectrometry and Monte Carlo
simulations, J. Radiol. Prot.
40, 848–860 (2020),
https://doi.org/10.1088/1361-6498/ab9f42
[15] D. West and A. Sherwood, Proton-scattering radiography, NDT
6(5), 249–257 (1973),
https://doi.org/10.1016/0029-1021(73)90072-8
[16] K. Peach and C. Ekdahl, Particle beam radiography, RAST
6,
117–142 (2013),
https://doi.org/10.1142/S1793626813300065
[17] G. Poludniowski, N.M. Allinson, and P.M. Evans, Proton
radiography and tomography with application to proton therapy,
Br. J. Radiol.
88, 20150134 (2015),
https://doi.org/10.1259/bjr.20150134
[18] M.C. Levy, D.D. Ryutov, S.C. Wilks, J.S. Ross, C.M.
Huntington, F. Fiuza, D.A. Martinez, N.L. Kugland, M.G. Baring,
and H.-S. Park, Development of an interpretive simulation tool
for the proton radiography technique, Rev. Sci. Instrum.
86,
033302 (2015),
https://doi.org/10.1063/1.4909536
[19] A.J. Mackinnon, P.K. Patel, M. Borghesi, R.C. Clarke, R.R.
Freeman, H. Habara, S.P. Hatchett, D. Hey, D.G. Hicks, S. Kar,
et al., Proton radiography of a laser-driven implosion, Phys.
Rev. Lett.
97, 045001 (2006),
https://doi.org/10.1103/PhysRevLett.97.045001
[20] Y.-C. Tsai, K.-H. Fan, T.-L. Tsai, C.-C. Lee, T. Aso, S.-W.
Wu, C.-Y. Lin, C.-K. Tseng, C.-R. Chen, S. Balaji, and T.-C.
Chao, Proton radiography using discrete range modulation method
– A Monte Carlo study, Radiat. Phys. Chem.
200, 110279
(2022),
https://doi.org/10.1016/j.radphyschem.2022.110279
[21] N.S.P. King, E. Ables, A. Ken, K.R. Alrick, J.F. Amann, S.
Balzar, P.D. Barnes Jr, M.L. Crow, S.B. Cushing, J.C. Eddleman,
et al., An 800-MeV proton radiography facility for dynamic
experiments, Nucl. Instrum. Methods Phys. Res. A
424,
84–91 (1999),
https://doi.org/10.1016/S0168-9002(98)01241-8
[22] C. Arran, C.P. Ridgers, and N.C. Woolsey, Proton
radiography in background magnetic fields, Matter Radiat.
Extrem.
6, 046904 (2021),
https://doi.org/10.1063/5.0054172
[23] L. Sheng, E. Yuan, F. Yuan, and B. Song, Amide proton
transfer-weighted imaging of the abdomen: Current progress and
future directions, Magn. Reson. Imaging
107, 88–99
(2024),
https://doi.org/10.1016/j.mri.2024.01.006
[24] L. Chang, X. Xu, G. Wu, L. Cheng, S. Li, W. Lv, D.
Pylypenko, W. Dou, D. Yu, Q. Wang, and F. Wang, Predicting
preoperative pathologic grades of bladder cancer using
intravoxel incoherent motion and amide proton transfer-weighted
imaging, Acad. Radiol.
31(4), 1438–1446 (2024),
https://doi.org/10.1016/j.acra.2023.09.044
[25] J. Berthold, C. Khamfongkhruea, J. Petzoldt, J. Thiele, T.
Hölscher, P. Wohlfahrt, N. Peters, C. Hofmann, G. Janssens, J.
Smeets, and C. Richter, First-in-human validation of CT-based
proton range prediction using prompt gamma imaging in prostate
cancer treatments, Int. J. Radiat. Oncol. Biol. Phys.
111(4),
1033–1043 (2021),
https://doi.org/10.1016/j.ijrobp.2021.06.036
[26] S. Shiraishi, M. Yamanaka, T. Murai, and K. Tokuuye,
Evaluation of delivered doses in proton beam therapy for
prostate cancer using positron emission tomography/computed
tomography imaging, Clin. Oncol.
36(4), 265–270 (2024),
https://doi.org/10.1016/j.clon.2024.01.011
[27] Ö.F. Özpolat, B. Alım, E. Şakar, M. Büyükyıldız, and M.
Kurudirek, Phy-X/ZeXTRa: A software for robust calculation of
effective atomic numbers for photon, electron, proton, alpha
particle, and carbon ion interactions, Radiat. Environ. Biophys.
59, 321–329 (2020),
https://doi.org/10.1007/s00411-019-00829-7
[28] P. Sigmund,
Particle Penetration and Radiation Effects,
Springer Series in Solid State Sciences, Vol. 151
(Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 2006),
https://doi.org/10.1007/3-540-31718-X
[29] M. Büyükyıldız, Charged particle interactions of human
organs and tissues in heavy ion therapy; effective atomic number
and electron density, AKU J. Sci. Eng.
20(2), 196–206
(2020),
https://doi.org/10.35414/akufemubid.692641
[30] M. Büyükyıldız and M. Kurudirek, Radiological properties of
healthy, carcinoma and equivalent breast tissues for photon and
charged particle interactions, Int. J. Radiat. Biol.
94(1),
70–78 (2018),
https://doi.org/10.1080/09553002.2018.1403057
[31] J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce
Dubois, M. Asai, G. Barrand, and R. Capra, Geant4 developments
and applications, IEEE Trans. Nucl. Sci.
53(1), 270–278
(2006),
https://doi.org/10.1109/TNS.2006.869826
[32] J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T.
Aso, E. Bagli, and A. Bagulya, Recent developments in GEANT4,
Nucl. Instrum. Methods Phys. Res. A
835, 186–225 (2016),
https://doi.org/10.1016/j.nima.2016.06.125
[33] M. Prall, M. Durante, T. Berger, B. Przybyla, C. Graeff,
P.M. Lang, C. LaTessa, L. Shestov, P. Simoniello, C. Danly, et
al., High-energy proton imaging for biomedical applications,
Sci. Rep.
6, 27651 (2016),
https://doi.org/10.1038/srep27651
[34] International Commission on Radiation Units and
Measurements,
Tissue Substitutes in Radiation Docimetry and
Measurement, ICRU Report 44 (1989),
https://www.icru.org/report/tissue-substitutes-in-radiation-dosimetry-andmeasurement-report-44/
[35] K.T. Osman, Stopping powers of protons in biological human
body substances (water, tissue, muscles and bones), Int. J.
Novel Res. Phys. Chem. Mathematics
7, 8–12 (2020),
[PDF]
[36] K.T. Osman, Mass stopping power and range of alpha
particles in adipose tissue, IJSEAS
6(10), 1–17 (2020),
https://doi.org/10.4236/oalib.1110775
[37] A.S. Almutairi and K.T. Osman, Mass stopping power and
range of protons in biological human body tissues (ovary, lung
and breast), Int. J. Med. Phys. Clin. Eng. Radiat. Oncol.
11(1),
48–59 (2021),
https://doi.org/10.4236/ijmpcero.2022.111005
[38] F.H. Attix,
Introduction to Radiological Physics and
Radiation Dosimetry, Chs. 4, 8 and 10, 1st edn. (John
Wiley and Sons, Inc., 1986),
https://doi.org/10.1002/9783527617135
[39] M.C. Tufan, and H. Gümüs, Stopping power calculations of
compounds by using Thomas–Fermi–Dirac–Weizsäcker density
functional, Acta Phys. Polon. A
114, 703–711 (2008),
https://doi.org/10.12693/APhysPolA.114.703
[40] A. Iqbal, N. Ullah, and A.U. Rahman, Density-dependent
energy loss of protons in Pb and Be targets and percent
mass-stopping power from Bethe-Bloch formula and
Bichsel-Sternheimer data within 1–12 MeV energy range: A
comparative study based on Bland-Altman analysis, J. Med.
Imaging Radiat. Sci. (JMIRS)
50, 149–156 (2019),
https://doi.org/10.1016/j.jmir.2018.10.003
[41] W. Bragg and R.B.Sc. Kleeman, On the α particles of radium
and their loss of range in passing through various atoms and
moleculs, Lond. Edinb. Dubl. Phil. Mag.
10, 318–340
(2009),
https://doi.org/10.1080/14786440509463378